【題目】在平面直角坐標系中,已知曲線:
(
為參數(shù))和定點
,
是曲線
的左、右焦點,以原點
為極點,以
軸的非負半軸為極軸且取相同單位長度建立極坐標系.
(1)求直線的極坐標方程;
(2)經(jīng)過點且與直線
垂直的直線
交曲線
于
兩點,求
的值.
【答案】(1) (2)
【解析】
(1)將曲線的參數(shù)方程化為普通方程,根據(jù)橢圓的性質(zhì)得出焦點坐標,由截距式寫出直線方程,再由
,
化為極坐標方程;
(2)根據(jù)題意得出直線的參數(shù)方程,并代入橢圓方程,利用韋達定理以及直線參數(shù)方程參數(shù)的幾何意義,得出
的值.
(1)曲線:
(
為參數(shù)),可化為
焦點為和
.
經(jīng)過和
的直線方程為
,即
.
又,
,
所以直線的極坐標方程為
,即
.
(2)由(1)知,直線的斜率為
,
因為,所以直線
的斜率為
,即傾斜角為
所以直線的參數(shù)方程為
(
為參數(shù)),
代入曲線的方程,得
,
即,
.
因為點在點
的兩側(cè),所以
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
,
為自然對數(shù)的底數(shù).
(1)當時,證明:對
;
(2)若函數(shù)在
上存在極值,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是,接下來的兩項是
,
,再接下來的三項是
,
,
,依此類推,若該數(shù)列前
項和
滿足:①
②
是2的整數(shù)次冪,則滿足條件的最小的
為
A. 21B. 91C. 95D. 10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,
底面
,
分別是
的中點,
,
,
.
(I)證明:;
(II)求直線與平面
所成角的正弦值;
(III)在邊上是否存在點
,使
與
所成角的余弦值為
,若存在,確定點
位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十二生肖,又稱十二屬相,中國古人拿十二種動物來配十二地支,組成子鼠、丑牛、寅虎、卯兔、辰龍、巳蛇、午馬、未羊、申猴、酉雞、戌狗、亥豬十二屬相。現(xiàn)有十二生肖吉祥物各一件,甲、乙、丙三位同學一次隨機抽取一件作為禮物,甲同學喜歡馬、牛,乙同學喜歡馬、龍、狗,丙同學除了鼠不喜歡外其他的都喜歡,則這三位同學抽取的禮物都喜歡的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為正整數(shù)的數(shù)列{an}的前n項和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數(shù)).
(1)若k=,t=
,數(shù)列{an}是等差數(shù)列,求a1的值;
(2)若數(shù)列{an}是等比數(shù)列,求證:k<t.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com