日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),

          (1)求函數(shù)的極值;

          (2)若不等式對(duì)恒成立,求的取值范圍.

          【答案】1)見(jiàn)解析;(2

          【解析】試題分析:1由題意的,求得,分類(lèi)討論得到函數(shù)的單調(diào)性,即可確定函數(shù)的極值;

          2設(shè),得到,令,則, ,

          求得,得到的單調(diào)性和值域,進(jìn)而分類(lèi)討論,得到的最小值,得到實(shí)數(shù)的取值范圍

          試題解析:

          1

          ,

          的定義域?yàn)?/span>

          時(shí), 上遞減, 上遞增,

          , 無(wú)極大值.

          時(shí), 上遞增,在上遞減,

          時(shí), 上遞增, 沒(méi)有極值.

          時(shí), 上遞增, 上遞減,

          ,

          綜上可知: 時(shí), 無(wú)極大值;

          時(shí), , ;

          時(shí), 沒(méi)有極值;

          時(shí), ,

          2)設(shè) ,

          設(shè),則, , ,

          上遞增,的值域?yàn)?/span>

          當(dāng)時(shí), 上的增函數(shù),

          ,適合條件.

          當(dāng)時(shí),,不適合條件.

          當(dāng)時(shí),對(duì)于,

          , ,

          存在,使得時(shí), ,

          上單調(diào)遞減,,

          即在時(shí), 不適合條件.

          綜上, 的取值范圍為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示的幾何體中,平面ABCD,四邊形ABCD為菱形,,點(diǎn)MN分別在棱FD,ED.

          1)若平面MAC,設(shè),求的值;

          2)若,平面AEN平面EDC所成的銳二面角為,求BE的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知曲線 為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為

          (1)求曲線的普通方程和直線的直角坐標(biāo)方程;

          (2)過(guò)點(diǎn)且與直線平行的直線, 兩點(diǎn),求點(diǎn), 兩點(diǎn)的距離之積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

          (1)求直線的直角坐標(biāo)方程和曲線的普通方程;

          (2)若曲線為曲線關(guān)于直線的對(duì)稱(chēng)曲線,點(diǎn)分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】直三棱柱中,,,分別是,的中點(diǎn),,則所成的角為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓,點(diǎn)為橢圓外一點(diǎn),過(guò)點(diǎn)向橢圓作兩條切線,當(dāng)兩條切線相互垂直時(shí),點(diǎn)在一個(gè)定圓上運(yùn)動(dòng),則該定圓的方程為__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,曲線是過(guò)點(diǎn),傾斜角為的直線,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

          (Ⅰ)求曲線的普通方程和曲線的一個(gè)參數(shù)方程;

          (Ⅱ)曲線與曲線相交于, 兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,DAC的中點(diǎn),四邊形BDEF是菱形,平面平面ABC,,

          若點(diǎn)M是線段BF的中點(diǎn),證明:平面AMC;

          求平面AEF與平面BCF所成的銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(題文)如圖在三棱錐中, 分別為棱的中點(diǎn),已知,

          求證(1)直線平面

          (2)平面 平面.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案