日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線的焦點(diǎn)為,其準(zhǔn)線與軸交于點(diǎn),過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn).

          (1)求拋物線的方程及的值;

          (2)若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:存在實(shí)數(shù),使得.

          【答案】(1),4;(2)證明見解析.

          【解析】

          1)根據(jù)準(zhǔn)線上點(diǎn)的坐標(biāo),得到,求出,即可得到拋物線方程;設(shè)直線的方程為,聯(lián)立直線與拋物線方程,由韋達(dá)定理,即可求出;

          2)先由(1)得,由點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,得到,根據(jù)題意,證明直線恒過(guò)定點(diǎn),再令,由,即可推出結(jié)論成立.

          (1)解:因?yàn)閽佄锞的準(zhǔn)線與軸交于點(diǎn),

          所以,

          解得.

          所以拋物線的方程為.

          設(shè)直線的方程為,

          聯(lián)立

          整理得,其中

          .

          .

          (2)證明:由(1)知,

          因?yàn)辄c(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,

          所以,

          則直線的方程為

          ,

          ,

          .

          ,得

          ,

          所以直線恒過(guò)定點(diǎn).

          所以點(diǎn)在線段上,

          所以不妨令.

          因?yàn)?/span>

          所以,

          所以

          所以.

          所以存在實(shí)數(shù),使得,命題得證.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有甲、乙兩隊(duì)學(xué)生參加“知識(shí)聯(lián)想”搶答賽,比賽規(guī)則:①主持人依次給出兩次提示,第一次提示后答對(duì)得2分,第二次提示后答對(duì)得1分,沒搶到或答錯(cuò)者不得分;②主持人給出第一個(gè)提示后開始搶答,第一輪搶答出錯(cuò)失去第二輪答題資格;③每局比賽分兩輪,若第一輪搶答者給出正確答案,則此局比賽結(jié)束,若第一輪答題者答錯(cuò),主持人提示后另一隊(duì)直接答題。如果甲、乙兩隊(duì)搶到答題權(quán)機(jī)會(huì)均等,并且勢(shì)均力敵,第一個(gè)提示后答對(duì)概率均為;第二個(gè)提示后答對(duì)概率均為為甲隊(duì)在一局比賽中的分.

          (1)求甲在一局比賽中得分的分布列;

          (2)若比賽共4局,求甲4局比賽中至少得6分的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱柱中,點(diǎn)在平面內(nèi)運(yùn)動(dòng),使得二面角的平面角與二面角的平面角互余,則點(diǎn)的軌跡是( )

          A. 一段圓弧 B. 橢圓的一部分 C. 拋物線 D. 雙曲線的一支

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對(duì)幾何學(xué)、力學(xué)等學(xué)科作出過(guò)卓越貢獻(xiàn).為調(diào)查中學(xué)生對(duì)這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請(qǐng)他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”.他們的調(diào)查結(jié)果如下:

          0項(xiàng)

          1項(xiàng)

          2項(xiàng)

          3項(xiàng)

          4項(xiàng)

          5項(xiàng)

          5項(xiàng)以上

          理科生(人)

          1

          10

          17

          14

          14

          10

          4

          文科生(人)

          0

          8

          10

          6

          3

          2

          1

          (1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?

          比較了解

          不太了解

          合計(jì)

          理科生

          文科生

          合計(jì)

          (2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

          (i)求抽取的文科生和理科生的人數(shù);

          (ii)從10人的樣本中隨機(jī)抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.

          參考數(shù)據(jù):

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          ,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】201829-2523屆冬奧會(huì)在韓國(guó)平昌舉行.4年后,24屆冬奧會(huì)將在中國(guó)北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)在平昌冬奧會(huì)開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看平昌冬奧會(huì)開幕式情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

          (Ⅰ)根據(jù)上表說(shuō)明,能否有的把握認(rèn)為,收看開幕式與性別有關(guān)?

          (Ⅱ)現(xiàn)從參與問(wèn)卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法,選取12人參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).

          (ⅰ)問(wèn)男、女學(xué)生各選取了多少人?

          (ⅱ)若從這12人中隨機(jī)選取3人到校廣播站開展冬奧會(huì)及冰雪項(xiàng)目的宣傳介紹,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.

          收看

          沒收看

          男生

          60

          20

          女生

          20

          20

          附:,其中.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),圓的方程為.以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

          (Ⅰ)求直線及圓的極坐標(biāo)方程;

          (Ⅱ)若直線與圓交于兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)為,且橢圓與圓 的公共弦長(zhǎng)為.

          (1)求橢圓的方程.

          (2)經(jīng)過(guò)原點(diǎn)作直線(不與坐標(biāo)軸重合)交橢圓于, 兩點(diǎn), 軸于點(diǎn),點(diǎn)在橢圓上,且,求證: , , 三點(diǎn)共線..

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

          甲說(shuō):“作品獲得一等獎(jiǎng)”;

          乙說(shuō):“作品獲得一等獎(jiǎng)”;

          丙說(shuō):“ 兩項(xiàng)作品未獲得一等獎(jiǎng)”;

          丁說(shuō):“作品獲得一等獎(jiǎng)”.

          若這四位同學(xué)只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

          (1)求直線的普通方程與圓的直角坐標(biāo)方程;

          (2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線段的中點(diǎn)的軌跡為,與直線交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案