如圖,的外接圓的切線
與
的延長(zhǎng)線交于點(diǎn)
,
的平分線與
交于點(diǎn)D.
(1)求證:
(2)若是
的外接圓的直徑,且
,
=1.求
長(zhǎng).
(1)略,(2)1
解析試題分析:(1)∵AE是圓的切線,∴∠ABC=∠CAE.
∵AD是∠BAC的平分線,∴∠BAD=∠CAD,
從而∠ABC+∠BAD=∠CAE+∠CAD.
∵∠ADE=∠ABC+∠BAD,∠DAE=∠CAD+∠CAE,
∴∠ADE=∠DAE,得EA=ED.
∵AE是圓的切線,∴由切割線定理,得=EC•EB.
結(jié)合EA=ED,得.
(2)由(1)及ABE與
ECA可得AC=1.
考點(diǎn):本題主要考查圓的切線定理,切割線定理。
點(diǎn)評(píng):中檔題,涉及圓的問題,往往與三角形相關(guān)聯(lián),利用三角形相似或三角形全等解決問題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
幾何證明選講.
如圖,直線過圓心
,交⊙
于
,直線
交⊙
于
(不與
重合),直線
與⊙
相切于
,交
于
,且與
垂直,垂足為
,連結(jié)
.
求證:(1);
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直角三角形的頂點(diǎn)坐標(biāo)
,直角頂點(diǎn)
,頂點(diǎn)
在
軸上,點(diǎn)
為線段
的中點(diǎn)
(Ⅰ)求邊所在直線方程;
(Ⅱ)為直角三角形
外接圓的圓心,求圓
的方程;
(Ⅲ)若動(dòng)圓過點(diǎn)
且與圓
內(nèi)切,求動(dòng)圓
的圓心
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)M在菱形ABCD的BC邊上,連結(jié)AM交BD于點(diǎn)E,過菱形ABCD的頂點(diǎn)C作CN∥AM,分別交BD、AD于點(diǎn)F、N,連結(jié)AF、CE.判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在邊長(zhǎng)為1的等邊△ABC中,D、E分別為邊AB、AC上的點(diǎn),若A關(guān)于直線DE的對(duì)稱點(diǎn)A1恰好在線段BC上,
(1)①設(shè)A1B=x,用x表示AD;②設(shè)∠A1AB=θ∈[0º,60º],用θ表示AD
(2)求AD長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,已知是
的切線,
為切點(diǎn),
是
的割線,與
交于
兩點(diǎn),圓心
在
的內(nèi)部,點(diǎn)
是
的中點(diǎn).
(1)證明四點(diǎn)共圓;
(2)求的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,四邊形ACBD內(nèi)接于圓O,對(duì)角線AC與BD相交于M,AC⊥BD,E是DC中點(diǎn)連結(jié)EM交AB于F,作OH⊥AB于HH,
求證:(1)EF⊥AB (2)OH=ME
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,從圓外一點(diǎn)
作圓
的兩條切線,切點(diǎn)分別為
,
與
交于點(diǎn)
,設(shè)
為過點(diǎn)
且不過圓心
的一條弦,求證:
四點(diǎn)共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選做題.(本題滿分10分.請(qǐng)考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.作答時(shí),用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的標(biāo)號(hào)涂黑.)
選修4—1:平面幾何
如圖,Δ是內(nèi)接于⊙O,
,直線
切⊙O于點(diǎn)
,弦
,
與
相交于點(diǎn)
.
(1)求證:Δ≌Δ
;
(2)若,求
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com