日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,離心率為
          2
          2
          ,以線段F1F2為直徑的圓的面積為π,設(shè)直線l過(guò)橢圓的右焦點(diǎn)F2(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),
          (1)求橢圓的方程;
          (2)若線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍;
          (3)求△ABF1面積的取值范圍.
          (1)由離心率為
          2
          2
          得:
          c
          a
          =
          2
          2

          又由線段F1F2為直徑的圓的面積為π得:πc2=π,c2=1②
          由①,②解得a=
          2
          ,c=1,∴b2=1,
          ∴橢圓方程為
          x2
          2
          +y2=1

          (2)由題意,F(xiàn)2(1,0),設(shè)l的方程為:y=k(x-1)(k≠0),代入橢圓方程
          整理得(1+2k2)x2-4k2x+2k2-2=0
          設(shè)A(x1,y1),B(x2,y2),AB中點(diǎn)為(x0,y0),則
          x0=
          2k2
          2k2+1
          ,y0=k(x0-1)=-
          2k
          2k2+1

          ∴線段AB的垂直平分線方程為y-y0=-
          1
          k
          (x-x0
          令y=0,得m=x0+ky0=
          k2
          2k2+1
          =
          1
          2+
          1
          k2

          由于
          1
          k2
          >0即2+
          1
          k2
          >2,
          ∴0<m<
          1
          2

          (3)由(2)知,x1+x2=
          4k2
          2k2+1
          ,x1x2=
          2k2-2
          2k2+1

          ∴|x1-x2|=
          2
          2k2+2
          2k2+1

          ∴|y1-y2|=
          2|k|
          2k2+2
          2k2+1

          ∴S△ABF1=
          1
          2
          ×2
          ×|y1-y2|=
          2|k|
          2k2+2
          2k2+1

          設(shè)2k2+1=t,則t>1,∴S△ABF1=
          2
          ×
          1-
          1
          t2

          ∵t>1,∴0<
          1
          t2
          <1,∴0<S△ABF1
          2
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且準(zhǔn)線方程為x=-1.
          (1)求拋物線C的標(biāo)準(zhǔn)方程;
          (2)過(guò)拋物線C焦點(diǎn)的直線l交拋物線于A,B兩點(diǎn),如果要同時(shí)滿足:①|(zhì)AB|≤8;②直線l與橢圓3x2+2y2=2有公共點(diǎn),試確定直線l傾斜角的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知圓G:x2+y2-2x-
          2
          y=0,經(jīng)過(guò)橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的右焦點(diǎn)F及上頂點(diǎn)B,過(guò)圓外一點(diǎn)(m,0)(m>a)傾斜角為
          6
          的直線l交橢圓于C,D兩點(diǎn),
          (1)求橢圓的方程;
          (2)若右焦點(diǎn)F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知拋物線y=x2上有一條長(zhǎng)為2的動(dòng)弦AB,則AB中點(diǎn)M到x軸的最短距離為_(kāi)_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓C與雙曲線
          x2
          2
          -
          y2
          6
          =1
          有相同焦點(diǎn)F1和F2,過(guò)F1的直線交橢圓于A、B兩點(diǎn),△ABF2的周長(zhǎng)為8
          3
          .若直線y=t(t>0)與橢圓C交于不同的兩點(diǎn)E、F,以線段EF為直徑作圓M.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若圓M與x軸相切,求圓M被直線x-
          3
          y+1=0
          截得的線段長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知離心率為
          3
          2
          的橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>o)過(guò)點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線l交橢圓于C不同的兩點(diǎn)A,B.
          (1)求橢圓的C方程.
          (2)證明:若直線MA,MB的斜率分別為k1、k2,求證:k1+k2=0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點(diǎn),|
          F1F2
          |=2
          ,離心率e=
          1
          2
          ,過(guò)橢圓右焦點(diǎn)F2的直線l與橢圓C交于M,N兩點(diǎn).
          (1)求橢圓C的方程;
          (2)設(shè)直線l的傾斜角為
          π
          4
          ,求線段MN中點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          設(shè)a、b是非零實(shí)數(shù),則方程bx2+ay2=ab及ax+by=0所表示的圖形可能是(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)雙曲線方程
          x2
          a2
          -
          y2
          b2
          =1(b>a>0)
          的半焦距為c,直線l過(guò)(a,0),(0,b)兩點(diǎn),已知原點(diǎn)到直線l的距離為
          3
          4
          c

          (1)求雙曲線的離心率;
          (2)經(jīng)過(guò)該雙曲線的右焦點(diǎn)且斜率為2的直線m被雙曲線截得的弦長(zhǎng)為15,求雙曲線的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案