日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱錐P-ABC中,,平面平面ABC,點(diǎn)D在線段BC上,且,F是線段AB的中點(diǎn),點(diǎn)EPD上的動點(diǎn).

          1)證明:.

          2)當(dāng)EF//平面PAC時,求三棱錐C-DEF的體積.

          【答案】(1)證明見解析 ;(2) .

          【解析】

          1)利用面面垂直的性質(zhì)定理證得平面,由此證得.通過中位線和等腰三角形的性質(zhì),證得,由此證得平面,進(jìn)而證得l;2)利用面面平行的判定定理證得,由此求得點(diǎn)到平面的距離等于點(diǎn)到平面距離的三分之一,進(jìn)而利用,求得三棱錐的體積.

          1)連接,因?yàn)?/span>,FAB的中點(diǎn),

          所以.

          又平面平面ABC,平面平面,

          所以平面ABC,從而

          設(shè)BC的中點(diǎn)H,連接,因?yàn)?/span>DF的中位線,

          所以.

          因?yàn)?/span>,中點(diǎn),,所以

          所以平面PDF

          因?yàn)?/span>平面PDF,所以

          2)設(shè)點(diǎn)E到平面ABC的距離為,由(1)知,則平面,而平面,所以平面平面,

          所以.

          所以,

          ,

          所以

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年國慶黃金周影市火爆依舊,《我和我的祖國》、《中國機(jī)長》、《攀登者》票房不斷刷新,為了解我校高三2300名學(xué)生的觀影情況,隨機(jī)調(diào)查了100名在校學(xué)生,其中看過《我和我的祖國》或《中國機(jī)長》的學(xué)生共有80位,看過《中國機(jī)長》的學(xué)生共有60位,看過《中國機(jī)長》且看過《我和我的祖國》的學(xué)生共有50位,則該校高三年級看過《我和我的祖國》的學(xué)生人數(shù)的估計值為( )

          A.1150B.1380C.1610D.1860

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:極坐標(biāo)與參數(shù)方程

          在極坐標(biāo)系下,已知圓O和直線

          1求圓O和直線l的直角坐標(biāo)方程;

          2當(dāng)時,求直線l與圓O公共點(diǎn)的一個極坐標(biāo)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)求曲線處的切線方程;

          (2)函數(shù)在區(qū)間上有零點(diǎn),求的值;

          (3)若不等式對任意正實(shí)數(shù)恒成立,求正整數(shù)的取值集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,.

          (1) 求證:;

          (2) 求直線與平面所成角的正弦值;

          (3) 線段上是否存在點(diǎn),使平面若存在,求出;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

          當(dāng)時,求曲線在點(diǎn),處的切線方程;

          討論的單調(diào)性;

          當(dāng)時,證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為.

          (1)求的值;

          (2)若斜率為的直線與拋物線交于兩點(diǎn),點(diǎn)為拋物線上一點(diǎn),其橫坐標(biāo)為1,記直線的斜率為,直線的斜率為,試問:是否為定值?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (Ⅰ)求函數(shù)的極值;

          (Ⅱ)若實(shí)數(shù)為整數(shù),且對任意的時,都有恒成立,求實(shí)數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (1)討論的單調(diào)性

          (2)若存在正數(shù),使得當(dāng),,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案