日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),.

          (Ⅰ)求函數(shù)的極值;

          (Ⅱ)若實(shí)數(shù)為整數(shù),且對(duì)任意的時(shí),都有恒成立,求實(shí)數(shù)的最小值.

          【答案】(Ⅰ)極大值為,無極小值;(Ⅱ)1.

          【解析】

          ()由題意首先求得導(dǎo)函數(shù)的解析式,然后結(jié)合導(dǎo)函數(shù)的符號(hào)討論原函數(shù)的單調(diào)性,從而可確定函數(shù)的極值;

          ()結(jié)合題意分離參數(shù),然后構(gòu)造新函數(shù),研究構(gòu)造的函數(shù),結(jié)合零點(diǎn)存在定理找到隱零點(diǎn)的范圍,最后利用函數(shù)值的范圍即可確定整數(shù)m的最小值.

          ()設(shè)

          ,

          ,則,則;

          上單調(diào)遞增,上單調(diào)遞減,

          ,無極小值.

          (),即上恒成立,

          上恒成立,

          設(shè),則,

          顯然,

          設(shè),則,故上單調(diào)遞減

          ,

          由零點(diǎn)定理得,使得,即

          時(shí),,則,

          時(shí),.

          上單調(diào)遞增,在上單調(diào)遞減

          ,

          又由,則

          ∴由恒成立,且為整數(shù),可得的最小值為1.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于函數(shù),有下列4個(gè)命題:①任取,都有恒成立;②,對(duì)于一切恒成立;③函數(shù)3個(gè)零點(diǎn);④對(duì)任意,不等式恒成立.則其中所有真命題的序號(hào)是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓Cab>0)的兩個(gè)焦點(diǎn)分別為F1,F2,離心率為,過F1的直線l與橢C交于M,N兩點(diǎn),且MNF2的周長為8.

          (1)求橢圓C的方程;

          (2)若直線ykxb與橢圓C分別交于AB兩點(diǎn),且OAOB,試問點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知等腰梯形中,的中點(diǎn),,將沿著翻折成,使平面平面

          )求證:;

          )求二面角的余弦值;

          )在線段上是否存在點(diǎn)P,使得平面,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點(diǎn).

          (Ⅰ)求證:平面;

          (Ⅱ),,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

          (1)求曲線的極坐標(biāo)方程;

          (2)在曲線上取兩點(diǎn) 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

          【答案】(1);(2)

          【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為,

          ,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得

          可得曲線C的極坐標(biāo)方程.

          (2)由(1)不妨設(shè)M(),,(),

          ,

          由此可求面積的最大值.

          試題解析:(1)由題意可知直線的直角坐標(biāo)方程為

          曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,

          所以曲線C的極坐標(biāo)方程為,

          .

          (2)由(1)不妨設(shè)M(),,(),

          ,

          當(dāng) 時(shí),

          所以△MON面積的最大值為.

          型】解答
          結(jié)束】
          23

          【題目】已知函數(shù)的定義域?yàn)?/span>;

          (1)求實(shí)數(shù)的取值范圍;

          (2)設(shè)實(shí)數(shù)的最大值,若實(shí)數(shù), , 滿足,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),且傾斜角為.

          (1)寫出曲線的直角坐標(biāo)方程以及點(diǎn)的直角坐標(biāo);

          (2)設(shè)直線與曲線相交于,兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面,,,的中點(diǎn).

          1)證明

          2)若,

          i)求直線與平面所成角的正弦值;

          ii)設(shè)平面與側(cè)棱交于,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)圖象兩條相鄰的對(duì)稱軸間的距離為.

          (1)求的值;

          (2)將函數(shù)的圖象沿軸向左平移個(gè)單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案