【題目】如圖,在三棱柱中,
,
,
平面ABC.
若
,求直線
與平面
所成的角的大;
在
的條件下,求二面角
的大小;
若
,
平面
,G為垂足,令
其中p、q、
,求p、q、r的值.
【答案】(1);(2)
;(3)
,
,
.
【解析】
建立如圖所示的空間直角坐標(biāo)系,設(shè)平面
的法向量為
y,
,則
,即可得出
,利用
即可得出.
在
的條件下,平面
的法向量為
0,
,取平面ABC的法向量
0,
,可得
,即可得出二面角
的平面角.
作
,M為垂足
由
平面
可得
,
平面
平面
平面
.
作,垂足為G,則
平面
利用三角形面積計(jì)算公式、勾股定理及其
其中p、q、
,即可得出.
解:建立如圖所示的空間直角坐標(biāo)系,
0,
,
0,
,
,
0,
,
,
0,
,
1,
,
設(shè)平面的法向量為
y,
,則
,
,
取,則
0,
,
.
直線
與平面
所成的角為
.
在
的條件下,平面
的法向量為
0,
,
取平面ABC的法向量0,
,
則,
由圖可知:二面角的平面角為鈍角,
二面角
的平面角為
.
作
,M為垂足.
由平面
,
又,
平面
.
平面
平面
.
作,垂足為G,則
平面
.
在,
,
.
.
.
,
可得0,
,
其中p、q、
,
0,
,0,
,
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某交通要道以往的日車(chē)流量(單位:萬(wàn)輛)進(jìn)行統(tǒng)計(jì),得到如下記錄:
日車(chē)流量x | 0≤x<5 | 5≤x<10 | 10≤x<15 | 15≤x<20 | 20≤x<25 | x≥25 |
頻率 | 0.05 | 0.25 | 0.35 | 0.25 | 0.10 | 0 |
將日車(chē)流量落入各組的頻率視為概率,并假設(shè)每天的車(chē)流量相互獨(dú)立.
(1)求在未來(lái)連續(xù)3天里,有連續(xù)2天的日車(chē)流量都不低于10萬(wàn)輛且另1天的日車(chē)流量低于5萬(wàn)輛的概率;
(2)用X表示在未來(lái)3天時(shí)間里日車(chē)流量不低于10萬(wàn)輛的天數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校的課外綜合實(shí)踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到
市氣象觀測(cè)站與市醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到
如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) | 22 | 25 | 29 | 26 | 16 | 12 |
該綜合實(shí)踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于
的線性回歸方程
.
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
參考數(shù)據(jù):
.
參考公式:回歸直線,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+bx﹣alnx.
(1)若x=2是函數(shù)f(x)的極值點(diǎn),1和x0是函數(shù)f(x)的兩個(gè)不同零點(diǎn),且x0∈(n,n+1),n∈N,求n.
(2)若對(duì)任意b∈[﹣2,﹣1],都存在x∈(1,e)(e為自然對(duì)數(shù)的底數(shù)),使得f(x)<0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在區(qū)間上任取一個(gè)數(shù)記為a,在區(qū)間
上任取一個(gè)數(shù)記為b.
若a,
,求直線
的斜率為
的概率;
若a,
,求直線
的斜率為
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣
cos2x.
(1)求f(x)的最小周期和最小值;
(2)將函數(shù)f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象.當(dāng)x∈ 時(shí),求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(1﹣ )的定義域?yàn)閇1,+∞),則函數(shù)y=
的定義域?yàn)?/span> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)原點(diǎn)的動(dòng)直線l與圓相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)M的軌跡C的方程;
(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P是曲線y=x3﹣ x+
上的任意一點(diǎn),點(diǎn)P處的切線傾斜角為α,則α的取值范圍為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com