日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且

          (Ⅰ)寫出年利潤(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;

          (Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?

          注:年利潤=年銷售收入-年總成本.

          【答案】(Ⅰ)

          (Ⅱ)年產(chǎn)量為千件時,該企業(yè)生產(chǎn)的此產(chǎn)品所獲年利潤最大.

          【解析】試題分析:(1)當(dāng)時, ;當(dāng)時, ,

          2)對x進行分類討論,分當(dāng)和當(dāng)兩種情況進行討論,根據(jù)導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,即可求出結(jié)果.

          試題解析:解:(1)當(dāng)時, 。2分 當(dāng)時, ,

          2當(dāng)時,由

          當(dāng)時, ;當(dāng)時,

          當(dāng)時,W取得最大值,即9

          當(dāng), ,

          當(dāng)且僅當(dāng)

          綜合①②知:當(dāng)時, 取得最大值為386萬元。

          故當(dāng)年產(chǎn)量為9千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得年利潤最大(13分)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一臺機器按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少,隨機器的運轉(zhuǎn)的速度而變化,具有線性相關(guān)關(guān)系,下表為抽樣試驗的結(jié)果:

          轉(zhuǎn)速x(轉(zhuǎn)/秒)

          8

          10

          12

          14

          16

          每小時生產(chǎn)有缺點的零件數(shù)y(件)

          5

          7

          8

          9

          11

          參考公式: , = =
          (1)如果y對x有線性相關(guān)關(guān)系,求回歸方程;
          (2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺點的零件最多有10個,那么機器的運轉(zhuǎn)速度應(yīng)控制在設(shè)么范圍內(nèi)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列 Sn為其前n項和.計算得 觀察上述結(jié)果,推測出計算Sn的公式,并用數(shù)學(xué)歸納法加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[ ]表示不超過 的最大整數(shù).若 S1=[ ]+[ ]+[ ]=3,
          S2=[ ]+[ ]+[ ]+[ ]+[ ]=10,
          S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=21,
          …,
          則Sn=(
          A.n(n+2)
          B.n(n+3)
          C.(n+1)2﹣1
          D.n(2n+1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=3sin(ωx+ 的部分圖象如圖所示,A,B兩點之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長度后所得函數(shù)圖象關(guān)于y軸對稱,則t的最小值為(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=sin( ﹣x)sinx﹣ cos2x. (I)求f(x)的最小正周期和最大值;
          (II)討論f(x)在[ , ]上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù), .

          (1)求函數(shù)的最小正周期;

          (2)求函數(shù)在區(qū)間上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
          (1)若a∈R,a≠0,證明:函數(shù)f(x)=ax2+x﹣a必有局部對稱點;
          (2)若函數(shù)f(x)=2x+b在區(qū)間[﹣1,1]內(nèi)有局部對稱點,求實數(shù)b的取值范圍;
          (3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某電影院共有1000個座位,票價不分等次,根據(jù)電影院的經(jīng)營經(jīng)驗,當(dāng)每張票價不超過10元時,票可全部售出;當(dāng)票價高于10元時,每提高1元,將有30張票不能售出.為了獲得更好的收益,需要給電影院一個合適的票價,基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放映一場電影的成本是5750元,票房收入必須高于成本.用x(元)表示每張票價,用y(元)表示該電影放映一場的純收入(除去成本后的收入). (Ⅰ)求函數(shù)y=f(x)的解析式;
          (Ⅱ)票價定為多少時,電影放映一場的純收入最大?

          查看答案和解析>>

          同步練習(xí)冊答案