日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ln(x﹣1)+ (a∈R).
          (1)若函數(shù)f(x)在區(qū)間(1,4)上單調(diào)遞增,求a的取值范圍;
          (2)若函數(shù)y=f(x)的圖象與直線4x﹣3y﹣2=0相切,求a的值.

          【答案】
          (1)解:函數(shù)f(x)=ln(x﹣1)+ ,

          則f′(x)= ,

          ∵函數(shù)f(x)在區(qū)間(1,4)上單調(diào)遞增,

          在x∈(1,4)上恒成立.

          即a≥ 在x∈(1,4)上恒成立.

          令g(x)= ,則g′(x)=

          當(dāng)x∈(1,3)時(shí),g′(x)>0,當(dāng)x∈(3,4)時(shí),g′(x)<0.

          ∴g(x)在(1,3)上為增函數(shù),在(3,4)上為減函數(shù),

          ∴g(x)max=g(3)=﹣8.

          則a≥﹣8;


          (2)解:設(shè)切點(diǎn)坐標(biāo)為(x0,y0),則f′(x0)=

          ,①

          f(x0)= ,②

          聯(lián)立①,②解得:x0=2,a=3


          【解析】(1)求出原函數(shù)的導(dǎo)函數(shù),由題意可得f′(x)≥對任意x∈(1,4)恒成立,分離參數(shù)a,可得a≥ ,利用導(dǎo)數(shù)求出函數(shù)g(x)= 在(1,4)上的最大值得答案;(2)設(shè)出切點(diǎn)坐標(biāo),求出函數(shù)在切點(diǎn)處的導(dǎo)數(shù),可得切線斜率,再由兩函數(shù)在切點(diǎn)處的函數(shù)值相等求得a的值.
          【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能得出正確答案.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3﹣1;當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x);當(dāng)x> 時(shí),f(x+ )=f(x﹣ ).則f(6)=(  )
          A.﹣2
          B.﹣1
          C.0
          D.2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知S2=4,an+1=2Sn+1,n∈N*
          (1)求通項(xiàng)公式an;
          (2)求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):

          3

          4

          5

          6

          2.5

          3

          4

          4.5

          (1)請根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

          (2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

          (參考:用最小二乘法求線性回歸方程系數(shù)公式,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是 ,并且經(jīng)過點(diǎn)

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2) 已知是橢圓的左頂點(diǎn),斜率為的直線交橢圓 兩點(diǎn),

          點(diǎn)上, , ,證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},則(RA)∩B的元素的個(gè)數(shù)為(
          A.3
          B.4
          C.5
          D.6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,的中點(diǎn).

          求證:平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線L經(jīng)過點(diǎn)P(-2,5),且斜率為

          (1)求直線L的方程.

          (2)求與直線L平行,且過點(diǎn)(2,3)的直線方程.

          (3)求與直線L垂直,且過點(diǎn)(2,3)的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】解答題
          (1)求函數(shù)f(x)=xlnx﹣(1﹣x)ln(1﹣x)在0<x≤ 上的最大值;
          (2)證明:不等式x1x+(1﹣x)x 在(0,1)上恒成立.

          查看答案和解析>>

          同步練習(xí)冊答案