日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知S2=4,an+1=2Sn+1,n∈N*
          (1)求通項(xiàng)公式an;
          (2)求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.

          【答案】
          (1)

          解:∵S2=4,an+1=2Sn+1,n∈N*

          ∴a1+a2=4,a2=2S1+1=2a1+1,

          解得a1=1,a2=3,

          當(dāng)n≥2時,an+1=2Sn+1,an=2Sn1+1,

          兩式相減得an+1﹣an=2(Sn﹣Sn1)=2an,

          即an+1=3an,當(dāng)n=1時,a1=1,a2=3,

          滿足an+1=3an,

          =3,則數(shù)列{an}是公比q=3的等比數(shù)列,

          則通項(xiàng)公式an=3n1


          (2)

          解:an﹣n﹣2=3n1﹣n﹣2,

          設(shè)bn=|an﹣n﹣2|=|3n1﹣n﹣2|,

          則b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,

          當(dāng)n≥3時,3n1﹣n﹣2>0,

          則bn=|an﹣n﹣2|=3n1﹣n﹣2,

          此時數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和Tn=3+ = ,

          則Tn=


          【解析】(1)根據(jù)條件建立方程組關(guān)系,求出首項(xiàng),利用數(shù)列的遞推關(guān)系證明數(shù)列{an}是公比q=3的等比數(shù)列,即可求通項(xiàng)公式an;(2)討論n的取值,利用分組法將數(shù)列轉(zhuǎn)化為等比數(shù)列和等差數(shù)列即可求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.本題主要考查遞推數(shù)列的應(yīng)用以及數(shù)列求和的計(jì)算,根據(jù)條件建立方程組以及利用方程組法證明列{an}是等比數(shù)列是解決本題的關(guān)鍵.求出過程中使用了轉(zhuǎn)化法和分組法進(jìn)行數(shù)列求和.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的通項(xiàng)公式(如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
          (1)設(shè)a=2,b= .
          ①求方程f(x)=2的根;
          ②若對于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求實(shí)數(shù)m的最大值;
          (2)若0<a<1,b>1,函數(shù)g(x)=f(x)﹣2有且只有1個零點(diǎn),求ab的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐P-ABC中,底面ABCD為平行四邊形,,OAC的中點(diǎn),平面MPD的中點(diǎn)。

          (1)證明平面

          (2)證明平面

          (3)求三棱錐P-MAC體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)列{An}、{Bn}分別在某銳角的兩邊上且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q(mào)表示點(diǎn)P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。

          A.{Sn}是等差數(shù)列
          B.{Sn2}是等差數(shù)列
          C.{dn}是等差數(shù)列
          D.{dn2}是等差數(shù)列

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):

          單價x(元)

          8

          8.2

          8.4

          8.6

          8.8

          9

          銷量y(件)

          90

          84

          83

          80

          75

          68

          (1)求回歸直線方程=bx+a;(其中,,,);

          (2)預(yù)計(jì)在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱臺ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

          (1)求證:BF⊥平面ACFD;
          (2)求直線BD與平面ACFD所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓,一動直線l過與圓相交于.兩點(diǎn),中點(diǎn),l與直線m:相交于.

          (1)求證:當(dāng)l與m垂直時,l必過圓心

          (2)當(dāng)時,求直線l的方程;

          (3)探索是否與直線l的傾斜角有關(guān),若無關(guān),請求出其值;若有關(guān),請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ln(x﹣1)+ (a∈R).
          (1)若函數(shù)f(x)在區(qū)間(1,4)上單調(diào)遞增,求a的取值范圍;
          (2)若函數(shù)y=f(x)的圖象與直線4x﹣3y﹣2=0相切,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在高為2的梯形中, , , ,過分別作, ,垂足分別為、。已知,將梯形沿、同側(cè)折起,得空間幾何體,如圖2。

          (1)若,證明:

          (2)若,證明: ;

          (3)在(1),(2)的條件下,求三棱錐的體積。

          查看答案和解析>>

          同步練習(xí)冊答案