日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          1
          3
          x3-ax2+(a2-1)x+b(a,b∈R).
          (Ⅰ)若x=1為f(x)的極值點(diǎn),求a的值;
          (Ⅱ)若y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為x+y-3=0,求f(x)在區(qū)間[-2,4]上的最大值;
          (Ⅲ)當(dāng)a≠0時(shí),若f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍.
          (Ⅰ)∵f′(x)=x2-2ax+(a2-1)
          ∵x=1為f(x)的極值點(diǎn),
          ∴f′(1)=0,即a2-2a=0,
          ∴a=0或2;

          (II)∵(1,f(1))是切點(diǎn),
          ∴1+f(1)-3=0∴f(1)=2
          即a2-a+b-
          8
          3
          =0
          ∵切線方程x+y-3=0的斜率為-1,
          ∴f'(1)=-1,即a2-2a+1=0,
          ∴a=1,b=
          8
          3

          ∵f(x)=
          1
          3
          x3-x2+
          8
          3

          ∴f'(x)=x2-2x,可知x=0和x=2是y=f(x)的兩個(gè)極值點(diǎn).
          ∵f(0)=
          8
          3
          ,f(2)=
          4
          3
          ,f(-2)=-4,f(4)=8
          ∴y=f(x)在區(qū)間[-2,4]上的最大值為8.

          (Ⅲ)因?yàn)楹瘮?shù)f(x)在區(qū)間(-1,1)不單調(diào),所以函數(shù)f′(x)在(-1,1)上存在零點(diǎn).
          而f'(x)=0的兩根為a-1,a+1,相距2,
          ∴在區(qū)間(-1,1)上不可能有2個(gè)零點(diǎn).
          所以f′(-1)f′(1)<0
          即:a2(a+2)(a-2)<0
          ∵a2>0,∴(a+2)(a-2)<0,-2<a<2
          又∵a≠0,
          ∴a∈(-2,0)∪(0,+2).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)f(x)=lnx-
          1
          2
          ax2+bx
          (a>0),且f′(1)=0.
          (Ⅰ)試用含有a的式子表示b,并求f(x)的極值;
          (Ⅱ)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2)),使得點(diǎn)M處的切線lAB,則稱AB存在“伴隨切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱AB存在“中值伴隨切線”.試問(wèn):在函數(shù)f(x)的圖象上是否存在兩點(diǎn)A、B使得它存在“中值伴隨切線”,若存在,求出A、B的坐標(biāo),若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)f(x)=
          1
          2
          ax2
          +2lnx,曲線y=f(x)在x=1處的切線斜率為4.
          (1)求a的值及切線方程;
          (2)點(diǎn)P(x,y)為曲線y=f′(x)上一點(diǎn),求y-x的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          方程x3-3x-m=0有且只有兩個(gè)不同的實(shí)根,則實(shí)數(shù)m=______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖為函數(shù)f(x)=
          x
          (0<x<1)的圖象,其在點(diǎn)M(t,f(t))處的切線為l,l與y軸和直線y=1分別交于點(diǎn)P、Q,點(diǎn)N(0,1),若△PQN的面積為b時(shí)的點(diǎn)M恰好有兩個(gè),則b的取值范圍為_(kāi)_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)f(x)=ln(ax+1)+
          1-x
          1+x
          ,x≥0
          ,其中a>0.
          (Ⅰ)若f(x)在x=1處取得極值,求a的值;
          (Ⅱ)求f(x)的單調(diào)區(qū)間;
          (Ⅲ)若f(x)的最小值為1,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)f(x)=x3-(2a+2)x2+bx+c,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=x-1,函數(shù)f(x)的導(dǎo)數(shù)y=f′(x)的圖象關(guān)于直線x=2對(duì)稱,求函數(shù)f(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          在△AnBnCn中,記角An、Bn、Cn所對(duì)的邊分別為an、bn、cn,且這三角形的三邊長(zhǎng)是公差為1的等差數(shù)列,若最小邊an=n+1,則
          lim
          n→∞
          Cn
          =(  )
          A.
          π
          2
          B.
          π
          3
          C.
          π
          4
          D.
          π
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          f(x)=
          1
          3
          x3-4x+4
          (1)求函數(shù)的極值
          (2)求函數(shù)在區(qū)間(-3,4)上的最大值與最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案