日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>

        1. 如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

          (1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);

          (2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          (3)當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請(qǐng)判定此時(shí)四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).


          【考點(diǎn)】二次函數(shù)綜合題.

          【專(zhuān)題】代數(shù)幾何綜合題;壓軸題.

          【分析】(1)將A,B點(diǎn)坐標(biāo)代入函數(shù)y=x2+bx+c中,求得b、c,進(jìn)而可求解析式及C坐標(biāo).

          (2)等腰三角形有三種情況,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分線,畫(huà)圓易得E大致位置,設(shè)邊長(zhǎng)為x,表示其他邊后利用勾股定理易得E坐標(biāo).

          (3)注意到P,Q運(yùn)動(dòng)速度相同,則△APQ運(yùn)動(dòng)時(shí)都為等腰三角形,又由A、D對(duì)稱(chēng),則AP=DP,AQ=DQ,易得四邊形四邊都相等,即菱形.利用菱形對(duì)邊平行且相等等性質(zhì)可用t表示D點(diǎn)坐標(biāo),又D在E函數(shù)上,所以代入即可求t,進(jìn)而D可表示.

          【解答】方法(1):

          解:(1)∵二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),

          ,

          解得,

          ∴y=x2x﹣4.

          ∴C(0,﹣4).

           

          (2)存在.

          如圖1,過(guò)點(diǎn)Q作QD⊥OA于D,此時(shí)QD∥OC,

          ∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0),

          ∴AB=4,OA=3,OC=4,

          ∴AC==5,

          ∵當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),AB=4,

          ∴AQ=4.

          ∵QD∥OC,

          ,

          ∴QD=,AD=

          ①作AQ的垂直平分線,交AO于E,此時(shí)AE=EQ,即△AEQ為等腰三角形,

          設(shè)AE=x,則EQ=x,DE=AD﹣AE=|﹣x|,

          ∴在Rt△EDQ中,(﹣x)2+(2=x2,解得 x=,

          ∴OA﹣AE=3﹣=﹣,

          ∴E(﹣,0),

          說(shuō)明點(diǎn)E在x軸的負(fù)半軸上;

          ②以Q為圓心,AQ長(zhǎng)半徑畫(huà)圓,交x軸于E,此時(shí)QE=QA=4,

          ∵ED=AD=

          ∴AE=,

          ∴OA﹣AE=3﹣=﹣

          ∴E(﹣,0).

          ③當(dāng)AE=AQ=4時(shí),

          1.當(dāng)E在A點(diǎn)左邊時(shí),

          ∵OA﹣AE=3﹣4=﹣1,

          ∴E(﹣1,0).

          2.當(dāng)E在A點(diǎn)右邊時(shí),

          ∵OA+AE=3+4=7,

          ∴E(7,0).

          綜上所述,存在滿(mǎn)足條件的點(diǎn)E,點(diǎn)E的坐標(biāo)為(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).

           

          (3)四邊形APDQ為菱形,D點(diǎn)坐標(biāo)為(﹣,﹣).理由如下:

          如圖2,D點(diǎn)關(guān)于PQ與A點(diǎn)對(duì)稱(chēng),過(guò)點(diǎn)Q作,F(xiàn)Q⊥AP于F,

          ∵AP=AQ=t,AP=DP,AQ=DQ,

          ∴AP=AQ=QD=DP,

          ∴四邊形AQDP為菱形,

          ∵FQ∥OC,

          ,

          ∴AF=,F(xiàn)Q=,

          ∴Q(3﹣,﹣),

          ∵DQ=AP=t,

          ∴D(3﹣﹣t,﹣),

          ∵D在二次函數(shù)y=x2x﹣4上,

          ∴﹣=(3﹣t)2(3﹣t)﹣4,

          ∴t=,或t=0(與A重合,舍去),

          ∴D(﹣,﹣).

           

          方法二:

          (1)略.

          (2)∵點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),都已每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC運(yùn)動(dòng).過(guò)點(diǎn)Q作x軸垂線,垂足為H.

          ∵A(3,0),C(0,4),

          ∴l(xiāng)AC:y=x﹣4,

          ∵點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),

          ∴AP=AQ=4,

          ∴QH=,Qy=﹣,

          代入LAC:y=x﹣4得,Qx=,則Q(,﹣),

          ∵點(diǎn)E在x軸上,

          ∴設(shè)E(a,0),

          ∵A(3,0),Q(,﹣),△AEQ為等腰三角形,

          ∴AE=EQ,AE=AQ,EQ=AQ,

          ∴(a﹣3)2=(a﹣)2+(0+)2,∴a=﹣,

          (a﹣3)2=(3﹣)2+(0+)2,∴a1=7,a2=﹣1,

          (a﹣)2+(0+)2=(3﹣)2+(0+)2,∴a1=﹣,a2=3(舍)

          ∴點(diǎn)E的坐標(biāo)為(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).

           

          (3)∵P,Q運(yùn)動(dòng)到t秒,

          ∴設(shè)P(3﹣t,0),Q(3﹣t,﹣ t),

          ∴KPQ=,KPQ=﹣2,

          ∵AD⊥PQ,

          ∴KPQ•KAD=﹣1,

          ∴KAD=,

          ∵A(3,0),

          ∴l(xiāng)AD:y=x﹣,

          ∵y=,

          ∴x1=3(舍),x2=﹣,

          ∴D(﹣,﹣),

          ∵DY=QY,即﹣t=﹣,t=,DQ∥AP,DQ=AQ=AP,此時(shí)四邊形APDQ的形狀為菱形.

          【點(diǎn)評(píng)】本題考查了二次函數(shù)性質(zhì)、利用勾股定理解直角三角形及菱形等知識(shí),總體來(lái)說(shuō)題意復(fù)雜但解答內(nèi)容都很基礎(chǔ),是一道值得練習(xí)的題目.


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:


          如圖,直線AB、CD相交于O,OE⊥AB于O,若∠1=2∠2,則∠AOC的度數(shù)為      

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:


          在矩形ABCD中,AD=5,AB=3,AE平分∠BAD交BC邊于點(diǎn)E,則線段BE,EC的長(zhǎng)度分別為(  )

          A.2和3       B.3和2       C.4和1       D.1和4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:


          若x=2﹣,則x2﹣4x+8=      

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:


          如圖,三個(gè)正方形圍成一個(gè)直角三角形,64,400分別為所在正方形的面積,則圖中字母所代表的正方形面積是( 。

          A.400+64     B.       C.400﹣64   D.4002﹣642

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:


          遵義市某中學(xué)為了搞好“創(chuàng)建全國(guó)文明城市”的宣傳活動(dòng),對(duì)本校部分學(xué)生(隨機(jī)抽查)進(jìn)行了一次相關(guān)知識(shí)了解程度的調(diào)查測(cè)試(成績(jī)分為A、B、C、D、E五個(gè)組,x表示測(cè)試成績(jī)).通過(guò)對(duì)測(cè)試成績(jī)的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題:

          (1)參加調(diào)查測(cè)試的學(xué)生為      人;

          (2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

          (3)本次調(diào)查測(cè)試成績(jī)中的中位數(shù)落在      組內(nèi);

          (4)若測(cè)試成績(jī)?cè)?0分以上(含80分)為優(yōu)秀,該中學(xué)共有學(xué)生2600人,請(qǐng)你根據(jù)樣本數(shù)據(jù)估計(jì)全校學(xué)生測(cè)試成績(jī)?yōu)閮?yōu)秀的總?cè)藬?shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:


          若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是      

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:


          如圖,在第1個(gè)△A1BC中,∠B=20°,A1B=CB;在邊A1B上任取一點(diǎn)D,延長(zhǎng)CA1到A2,使A1A2=A1D,得到第2個(gè)△A1A2D;在邊A2D上任取一點(diǎn)E,延長(zhǎng)A1A2到A3,使A2A3=A2E,得到第3個(gè)△A2A3E,…按此做法繼續(xù)下去,則第5個(gè)三角形中以A5為頂點(diǎn)的內(nèi)角度數(shù)是      

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:


          下列計(jì)算結(jié)果正確的是( 。

          A.22+22=24  B.23÷23=2    C.  D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案