如圖,正方形ABCD和正方形AEFG有一個(gè)公共點(diǎn)A,點(diǎn)G、E分別在線段AD、AB上.
(1)連接DF、BF,若將正方形AEFG繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),判斷命題“在旋轉(zhuǎn)的過程中,線段DF與BF的長始終相等”是否正確?若正確,請證明;若不正確,請舉例說明;
(2)若將正方形AEFG繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)過程中,你能否找到一條線段的長與線段DG的長始終相等?并以圖為例說明理由.
【考點(diǎn)】旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);正方形的性質(zhì).
【專題】幾何圖形問題;綜合題.
【分析】(1)顯然,當(dāng)A,F(xiàn),B在同一直線上時(shí),DF≠BF.
(2)注意使用兩個(gè)正方形的邊和90°的角,可判斷出△DAG≌△BAE,那么DG=BE.
【解答】解:(1)不正確.
若在正方形GAEF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°,這時(shí)點(diǎn)F落在線段AB或AB的延長線上.(或?qū)⒄叫蜧AEF繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使得點(diǎn)F落在線段AB或AB的延長線上).如圖:
設(shè)AD=a,AG=b,
則DF=>a,
BF=|AB﹣AF|=|a﹣b|<a,
∴DF>BF,即此時(shí)DF≠BF;
(2)連接BE,可得△ADG≌△ABE,
則DG=BE.如圖,
∵四邊形ABCD是正方形,
∴AD=AB,
∵四邊形GAEF是正方形,
∴AG=AE,
又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,
∴∠DAG=∠BAE,
∴△DAG≌△BAE,
∴DG=BE.
【點(diǎn)評(píng)】注意點(diǎn)在特殊位置時(shí)所得到的關(guān)系,判斷邊相等,通常要找全等三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A、B 的對應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若a>b,且c為實(shí)數(shù),有下列各式:
①ac>bc;②ac<bc;③ac2>bc2;④ac2≥bc2;⑤>
其中,正確的有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
直線l1:y=x+1與直線l2:y=mx+n相交于點(diǎn)P(a,2),則關(guān)于x的不等式x+1≥mx+n的解集為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com