分析 (1)根據(jù)A坐標(biāo),以及AB=3BD求出D坐標(biāo),代入反比例解析式求出k的值;
(2)直線y=3x與反比例解析式聯(lián)立方程組即可求出點(diǎn)C坐標(biāo);
(3)作C關(guān)于y軸的對(duì)稱點(diǎn)C′,連接C′D交y軸于M,則d=MC+MD最小,得到C′(-$\frac{\sqrt{3}}{3}$,$\sqrt{3}$),求得直線C′D的解析式為y=-$\sqrt{3}$x+1+$\sqrt{3}$,直線與y軸的交點(diǎn)即為所求.
解答 解:(1)∵A(1,3),
∴AB=3,OB=1,
∵AB=3BD,
∴BD=1,
∴D(1,1)
將D坐標(biāo)代入反比例解析式得:k=1;
(2)由(1)知,k=1,
∴反比例函數(shù)的解析式為;y=$\frac{1}{x}$,
則$\left\{\begin{array}{l}{y=3x}\\{y=\frac{1}{x}}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{3}}\\{y=\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{3}}\\{y=-\sqrt{3}}\end{array}\right.$,
∵x>0,
∴C($\frac{\sqrt{3}}{3}$,$\sqrt{3}$);
(3)如圖,作C關(guān)于y軸的對(duì)稱點(diǎn)C′,連接C′D交y軸于P,則d=PC+PD最小,
∴C′(-$\frac{\sqrt{3}}{3}$,$\sqrt{3}$),
設(shè)直線C′D的解析式為:y=kx+b,
∴$\left\{\begin{array}{l}{\sqrt{3}=-\frac{\sqrt{3}}{3}k+b}\\{1=k+b}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-3+2\sqrt{3}}\\{b=-2+2\sqrt{3}}\end{array}\right.$,
∴y=(-3+2$\sqrt{3}$)x+2$\sqrt{3}$-2,
當(dāng)x=0時(shí),y=2$\sqrt{3}$-2,
∴P(0,2$\sqrt{3}$-2).
點(diǎn)評(píng) 此題考查了反比例函數(shù)綜合題,涉及的知識(shí)有:坐標(biāo)與圖形性質(zhì),待定系數(shù)法確定函數(shù)解析式,以及直線與反比例的交點(diǎn)求法,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com