四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點(diǎn),ABCE為菱形,∠BAD=120°,PA=AB,G、F分別是線段CE、PB的中點(diǎn).
(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.
(Ⅰ)詳見解析;(Ⅱ)二面角的正切值為
.
解析試題分析:(Ⅰ)連結(jié)BD,因?yàn)镋是AD的中點(diǎn)是CE的中點(diǎn),所以BD過(guò)
點(diǎn),這樣只需證
即可;(Ⅱ)求二面角
的正切值,需找出平面角,注意到PA⊥平面ABCD,F(xiàn)是線段PB的中點(diǎn),取
的中點(diǎn)
,則
⊥平面ABCD,過(guò)
作
,垂足為
,則
即為二面角
的平面角.
試題解析:(Ⅰ)證明:連結(jié),因?yàn)镋是AD的中點(diǎn),
是CE的中點(diǎn),且ABCE為菱形,
,
,所以
過(guò)
點(diǎn),且
是
的中點(diǎn),在
中,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/2/14z774.png" style="vertical-align:middle;" />是
的中點(diǎn),
,又
平面
,
平面
;
(Ⅱ)取的中點(diǎn)
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/2/14z774.png" style="vertical-align:middle;" />是
的中點(diǎn),
,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6d/f/1a3ih2.png" style="vertical-align:middle;" />平面
,
平面
,過(guò)
作
,垂足為
,連結(jié)
,則
即為二面角
的平面角,
不妨令,則
,有平面幾何知識(shí)可知
,
,所以二面角
的正切值為
.
考點(diǎn):1、線面平行的判定,2、二面角的求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點(diǎn),且MN=PQ.
(1)求證:四邊形為平行四邊形;
(2)試在直線AC上找一點(diǎn)F,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐中,側(cè)面
底面
,
,
為
中點(diǎn),底面
是直角梯形,
,
,
,
.
(1)求證:面
;
(2)求證:面面
;
(3)設(shè)為棱
上一點(diǎn),
,試確定
的值使得二面角
為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,
,
為
的中點(diǎn)
(I)求證:平面平面
;
(II)求到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱中,
平面
.
(Ⅰ)從下列①②③三個(gè)條件中選擇一個(gè)做為的充分條件,并給予證明;
①,②
;③
是平行四邊形.
(Ⅱ)設(shè)四棱柱的所有棱長(zhǎng)都為1,且
為銳角,求平面
與平面
所成銳二面角
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體中,
,
,
,
是線段
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求平面把長(zhǎng)方體
分成的兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,邊長(zhǎng)為a的正方形ABCD中,點(diǎn)E、F分別在AB、BC上,且,將△AED、△CFD分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)
,連結(jié)A¢B.
(Ⅰ)判斷直線EF與A¢D的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)求二面角F-A¢B-D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如左圖,四邊形中,
是
的中點(diǎn),
,
,
,
,將左圖沿直線
折起,使得二面角
為
,如右圖.
(1)證明:平面
;
(2)求直線與平面
所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com