日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          (Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

          (Ⅱ)已知直線與曲線交于, 兩點(diǎn),與軸交于點(diǎn),求.

          【答案】(1)直線l的直角坐標(biāo)方程為xy-2=0;(2)3.

          【解析】試題分析:(1)消參得到曲線的普通方程,利用極坐標(biāo)和直角坐標(biāo)方程的互化公式求得直線的直角坐標(biāo)方程(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進(jìn)行求解.

          試題解析:(1)由曲線C的參數(shù)方程 (α為參數(shù)) (α為參數(shù)),

          兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;

          由直線l的極坐標(biāo)方程可得ρcosθcos-ρsinθsinρcosθ-ρsinθ=2,

          即直線l的直角坐標(biāo)方程為x-y-2=0.

          (2)由題意可得P(2,0),則直線l的參數(shù)方程為 (t為參數(shù)).

          設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,

          (t為參數(shù))代入(x-1)2+y2=4,得t2t-3=0,

          則Δ>0,由韋達(dá)定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)有兩個(gè)零點(diǎn).

          (1)求實(shí)數(shù)的取值范圍;

          (2)設(shè), )是的兩個(gè)零點(diǎn),證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列滿足: , ,

          ()判斷的大小關(guān)系,并證明你的結(jié)論;

          ()求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為 , 為橢圓的上頂點(diǎn), 為等邊三角形,且其面積為, 為橢圓的右頂點(diǎn).

          Ⅰ)求橢圓的方程;

          Ⅱ)若直線與橢圓相交于兩點(diǎn)(不是左、右頂點(diǎn)),且滿足,試問:直線是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo),否則說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)求函數(shù)的最小值;

          (Ⅱ)解不等式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若,討論函數(shù)的單調(diào)性;

          2)若函數(shù)上恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內(nèi)的交點(diǎn)為,且.

          (1)求橢圓的方程;

          (2)過點(diǎn)的直線交橢圓兩點(diǎn),當(dāng)時(shí),求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2018海南高三階段性測(cè)試(二模)如圖,在直三棱柱中, , ,點(diǎn)的中點(diǎn),點(diǎn)上一動(dòng)點(diǎn).

          I)是否存在一點(diǎn),使得線段平面?若存在,指出點(diǎn)的位置,若不存在,請(qǐng)說明理由.

          II)若點(diǎn)的中點(diǎn)且,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求的普通方程和的直角坐標(biāo)方程;

          (2)若過點(diǎn)的直線交于,兩點(diǎn),與交于兩點(diǎn),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案