日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在一段時間內(nèi),分5次測得某種商品的價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)為:

          1

          2

          3

          4

          5

          價格x

          1.4

          1.6

          1.8

          2

          2.2

          需求量y

          12

          10

          7

          5

          3

          已知,

          (1)畫出散點圖;

          (2)求出yx的線性回歸方程;

          (3)如價格定為1.9萬元,預(yù)測需求量大約是多少?(精確到0.01 t).

          參考公式: .

          【答案】(1)見解析;(2)y=28.1-11.5x;(3)6.25t.

          【解析】分析:(1)先描出各點即得散點圖.(2)利用最小二乘法求出yx的線性回歸方程.(3)令x=1.9即得需求量.

          詳解:(1)散點圖如圖所示:

          (2)因為×9=1.8,×37=7.4,

          ,

          所以

          a=- b=7.4+11.5×1.8=28.1,

          yx的線性回歸方程為 y=28.1-11.5x.

          (3)當x=1.9時,y =28.1-11.5×1.9=6.25(t),

          所以如價格定為1.9萬元,預(yù)測需求量大約是6.25(t).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于序列A0:a0 , a1 , a2 , …,an(n∈N*),實施變換T得序列A1:a1+a2 , a2+a3 , …,an1+an , 記作A1=T(A0):對A1繼續(xù)實施變換T得序列A2=T(A1)=T(T(A0)),記作A2=T2(A0);…;An1=Tn1(A0).最后得到的序列An1只有一個數(shù),記作S(A0). (Ⅰ)若序列A0為1,2,3,求S(A0);
          (Ⅱ)若序列A0為1,2,…,n,求S(A0);
          (Ⅲ)若序列A和B完全一樣,則稱序列A與B相等,記作A=B,若序列B為序列A0:1,2,…,n的一個排列,請問:B=A0是S(B)=S(A0)的什么條件?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若定義域為R的偶函數(shù)y=f(x)滿足f(x+2)=﹣f(x),且當x∈[0,2]時,f(x)=2﹣x2 , 則方程f(x)=sin|x|在[﹣3π,3π]內(nèi)根的個數(shù)是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知等差數(shù)列中,公差,其前項和為,且滿足:

          (Ⅰ)求數(shù)列的通項公式;

          (Ⅱ)通過公式構(gòu)造一個新的數(shù)列.若也是等差數(shù)列,求非零常數(shù);

          (Ⅲ)求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù),關(guān)于x的方程3個不同的實數(shù)根,則( 。

          A. b<﹣2c0B. b>﹣2c0C. b=﹣2c0D. b>﹣2c0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知M( ,0),N(2,0),曲線C上的任意一點P滿足: = | |.
          (Ⅰ)求曲線C的方程;
          (Ⅱ)設(shè)曲線C與x軸的交點分別為A、B,過N的任意直線(直線與x軸不重合)與曲線C交于R、Q兩點,直線AR與BQ交于點S.問:點S是否在同一直線上?若是,請求出這條直線的方程;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列判斷錯誤的是

          A. 若隨機變量服從正態(tài)分布,;

          B. 組數(shù)據(jù)的散點都在上,則相關(guān)系數(shù)

          C. 若隨機變量服從二項分布, ;

          D. 的充分不必要條件;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=ax2+bx+ca≠0)滿足f0)=0,對于任意xR,都有fxx,且,令gx)=fx)﹣x1|λ0).

          1)求函數(shù)fx)的表達式;

          2)求函數(shù)gx)的單調(diào)區(qū)間;

          3)當λ2時,判斷函數(shù)gx)在區(qū)間(0,1)上的零點個數(shù),并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

          A.12
          B.24
          C.36
          D.48

          查看答案和解析>>

          同步練習(xí)冊答案