日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的與直線相切.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)過定點(diǎn)斜率為的直線與橢圓交于兩點(diǎn),若,求斜率的值;

          (Ⅲ)若(Ⅱ)中的直線交于兩點(diǎn),設(shè)點(diǎn)上,試探究使的面積為的點(diǎn)共有幾個(gè)?證明你的結(jié)論.

          【答案】(Ⅰ);(Ⅱ);(Ⅲ)見解析.

          【解析】試題分析:(Ⅰ)運(yùn)用橢圓的離心率公式和直線和圓相切的條件,結(jié)合的關(guān)系,解方程可得,進(jìn)而得到橢圓方程;(Ⅱ)設(shè)直線方程為,代入橢圓方程,運(yùn)用韋達(dá)定理和向量的數(shù)量積的坐標(biāo)表示,解方程可得斜率;(Ⅲ)求得圓心到直線的距離,圓的弦長,由三角形的面積公式可得的距離,結(jié)合半徑與圓心到直線的距離之差的關(guān)系,即可判斷的個(gè)數(shù).

          試題解析:(Ⅰ)原點(diǎn)到直線的距離.

          所以,橢圓的方程為.

          (Ⅱ)將直線與橢圓聯(lián)立,消去,整理得,由韋達(dá)定理得.

          .

          .

          ,得.

          (Ⅲ)由(2)知,直線的方程為.

          原點(diǎn)到直線的距離,弦長.

          上存在點(diǎn)使的面積為,則點(diǎn)到直線的距離

          .

          當(dāng)直線的斜率時(shí),有4個(gè)點(diǎn)使面積為;當(dāng)直線的斜率時(shí),有4個(gè)點(diǎn)使面積為.

          【方法點(diǎn)晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系和數(shù)量積公式,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點(diǎn)在軸上,還是在軸上,還是兩個(gè)坐標(biāo)軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程 ;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (1)f(x)的最小正周期及單調(diào)減區(qū)間;

          (2)α(0,π),,求tan的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}滿足a11,an13an1.

          (1)證明是等比數(shù)列,并求{an}的通項(xiàng)公式;

          (2)證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)的內(nèi)角A,B,C的對(duì)邊分別為ab,c,且B為鈍角,

          (1);(2)求的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點(diǎn)的中點(diǎn).

          )求證: 平面

          )求證:平面平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列四個(gè)命題:

          ①“若的極值點(diǎn),則”的逆命題為真命題;

          ②“平面向量的夾角是鈍角的充分不必要條件是

          ③若命題,則

          ④函數(shù)在點(diǎn)處的切線方程為.

          其中不正確的個(gè)數(shù)是

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(1)求對(duì)稱軸是軸,焦點(diǎn)在直線上的拋物線的標(biāo)準(zhǔn)方程;

          (2)過拋物線焦點(diǎn)的直線它交于兩點(diǎn),求弦的中點(diǎn)的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下的資料:

          該興趣小組確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選用的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          (1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

          (2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月的數(shù)據(jù),求出關(guān)于的線性回歸方程

          (3)若有線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否是理想?

          參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線l1的方程為3x+4y﹣12=0.

          (1)若直線l2與l1平行,且過點(diǎn)(﹣1,3),求直線l2的方程;

          (2)若直線l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4,求直線l2的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案