日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)F1,F(xiàn)2是橢圓C:的兩個(gè)焦點(diǎn),若在C上存在一點(diǎn)P,使PF1⊥PF2,且∠PF1F2=30°,則C的離心率為_____________.

          試題分析:因?yàn)镻F1⊥PF2,且∠PF1F2=30°,所以PF1=,PF2=,又PF1+PF2=2a,所以2a=,=.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓相切.

          (1)求橢圓的方程;
          (2)如圖,、、是橢圓的頂點(diǎn),是橢圓上除頂點(diǎn)外的任意點(diǎn),直線軸于點(diǎn),直線于點(diǎn),設(shè)的斜率為的斜率為,求證:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓=1上任一點(diǎn)P,由點(diǎn)Px軸作垂線PQ,垂足為Q,設(shè)點(diǎn)MPQ上,且=2,點(diǎn)M的軌跡為C.
          (1)求曲線C的方程;
          (2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),且滿足 (O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知點(diǎn)是橢圓上的一動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),是坐標(biāo)原點(diǎn),若的角平分線上的一點(diǎn),且,則的取值范圍為(     )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,一個(gè)頂點(diǎn)的坐標(biāo)為,則此橢圓方程為         

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          當(dāng)0 < a < 1時(shí),方程=1表示的曲線是 (   )
          A.圓B.焦點(diǎn)在x軸上的橢圓
          C.焦點(diǎn)在y軸上的橢圓D.雙曲線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是 (  )
          A.2    B.6  C.4  D.12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知橢圓(a>b>0)的離心率為,過右焦點(diǎn)且斜率為(k>0)的直線于相交于、兩點(diǎn),若,則 =(  )
          A.1B.C.D.2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上的任意一點(diǎn),若∠PF1F2=α,∠PF2F1=β,且cosα=,sin(α+β)=,則此橢圓的離心率為       

          查看答案和解析>>

          同步練習(xí)冊(cè)答案