日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù) ,其中是自然對數(shù)的底數(shù).

          (Ⅰ)求曲線在點(diǎn)處的切線方程;

          (Ⅱ)令,討論的單調(diào)性并判斷有無極值,有極值時求出極值.

          【答案】(1) (2)見解析

          【解析】試題分析:(Ⅰ)求導(dǎo)數(shù)得斜率,由點(diǎn)斜式寫出直線方程.

          (Ⅱ)寫出函數(shù),

          求導(dǎo)數(shù)得到 ,由于的正負(fù)與的取值有關(guān),故可令,通過應(yīng)用導(dǎo)數(shù)研究上的單調(diào)性,明確其正負(fù).然后分以下情況討論 極值情況:(1)當(dāng)時.(2)當(dāng)時.

          試題解析:(Ⅰ)由題意

          ,

          所以,

          因此 曲線在點(diǎn)處的切線方程為

          ,

          .

          (Ⅱ)由題意得 ,

          因?yàn)?/span>

          所以上單調(diào)遞增.

          因?yàn)?/span>

          所以 當(dāng)時,

          當(dāng)時,

          (1)當(dāng)時,

          當(dāng)時, , 單調(diào)遞減,

          當(dāng)時, , 單調(diào)遞增,

          所以 當(dāng)取得極小值,極小值是 ;

          (2)當(dāng)時,

          ,

          ①當(dāng)時, ,

          當(dāng)時, , 單調(diào)遞增;

          當(dāng)時, , 單調(diào)遞減;

          當(dāng)時, , 單調(diào)遞增.

          所以 當(dāng)取得極大值.

          極大值為

          當(dāng)取到極小值,極小值是 ;

          ②當(dāng)時, ,

          所以 當(dāng)時, ,函數(shù)上單調(diào)遞增,無極值;

          ③當(dāng)時,

          所以 當(dāng)時, , 單調(diào)遞增;

          當(dāng)時, , 單調(diào)遞減;

          當(dāng)時, , 單調(diào)遞增;

          所以 當(dāng)取得極大值,極大值是;

          當(dāng)取得極小值.

          極小值是.

          綜上所述:

          當(dāng)時, 上單調(diào)遞減,在上單調(diào)遞增,

          函數(shù)有極小值,極小值是;

          當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減,函數(shù)有極大值,也有極小值,

          極大值是

          極小值是

          當(dāng)時,函數(shù)上單調(diào)遞增,無極值;

          當(dāng)時,函數(shù)上單調(diào)遞增,

          上單調(diào)遞減,函數(shù)有極大值,也有極小值,

          極大值是;

          極小值是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將圓x2+y2=1 每一點(diǎn)的,橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得到曲線C.
          (1)寫出C的參數(shù)方程;
          (2)設(shè)直線l:2x+y-2=0 與C的交點(diǎn)為P1,P2 ,以坐標(biāo)原點(diǎn)為極點(diǎn), x 軸的正半軸為極軸建立極坐標(biāo)系,求線段 P1P2 的中點(diǎn)且與 l 垂直的直線的極坐標(biāo)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),直線l與y軸的交點(diǎn)為P.
          (1)寫出點(diǎn)P的極坐標(biāo)(ρ,θ)(其中ρ>0,0≤θ<2π);
          (2)求曲線 上的點(diǎn)到P點(diǎn)距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}
          (1)當(dāng)m=1時,求A∪B;
          (2)若BRA,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合,若對于任意,存在,使得成立,則稱集合是“好集合”.給出下列4個集合:①;②;③;④.其中為“好集合”的序號是( )

          A. ①②④ B. ②③ C. ③④ D. ①③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在銳角△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、,若C=45°,b=4 ,sinB=
          (1)求c的值;
          (2)求sinA的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=sinx+cosx,x∈R.
          (1)求函數(shù)f(x)的最小正周期和最大值;
          (2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過怎么的變換得到?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若y=(m﹣1)x2+2mx+3是偶函數(shù),則f(﹣1),f(﹣ ),f( )的大小關(guān)系為(
          A.f( )>f( )>f(﹣1)
          B.f( )<f(﹣ )<f(﹣1)??
          C.f(﹣ )<f( )<f(﹣1)
          D.f(﹣1)<f( )<f(﹣

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x﹣a2|﹣a2 , 且對x∈R,恒有f(x﹣2)<f(x),則實(shí)數(shù)a的取值范圍為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊答案