日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】將圓x2+y2=1 每一點的,橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得到曲線C.
          (1)寫出C的參數(shù)方程;
          (2)設(shè)直線l:2x+y-2=0 與C的交點為P1,P2 ,以坐標(biāo)原點為極點, x 軸的正半軸為極軸建立極坐標(biāo)系,求線段 P1P2 的中點且與 l 垂直的直線的極坐標(biāo)方程.

          【答案】
          (1)

          解:設(shè)(x1,y1)為圓上的點,在已知變換下變?yōu)镃上點(x,y),依題意,得 由x12+y12=1得,即曲線C的方程為.

          故C的參數(shù)方程為 (t為參數(shù)).


          (2)

          解:由 ,解得

          不妨設(shè)P1(1,0),P2(0,2),則線段P1P2的中點坐標(biāo)為 ,所求直線的斜率 ,于是所求直線方程為,

          化為極坐標(biāo)方程,并整理得

          2ρcos θ-4ρsin θ=-3,即 .


          【解析】本題主要考查了橢圓的參數(shù)方程,決問題的關(guān)鍵是(1)在曲線C上任取一點(x,y) ,可以根據(jù)點 在圓 x2+y2=1 上,求出C的方程,再化為參數(shù)方程;(2)解方程組 求得P1,P2 的坐標(biāo),可得線段 P1P2 的中點坐標(biāo),再根據(jù)與直線 l 垂直的直線的斜率為,用點斜式求得直線方程,并利用 將其化為極坐標(biāo)方程.
          【考點精析】本題主要考查了橢圓的參數(shù)方程的相關(guān)知識點,需要掌握橢圓的參數(shù)方程可表示為才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機(jī)抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

          (1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

          (2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

          箱產(chǎn)量<50 kg

          箱產(chǎn)量≥50 kg

          舊養(yǎng)殖法

          新養(yǎng)殖法

          (3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.

          附:

          P

          0.050 0.010 0.001

          k

          3.841 6.635 10.828

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

          (I)求的解析式及單調(diào)遞減區(qū)間;

          (II)是否存在常數(shù),使得對于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4—4:坐標(biāo)系與參數(shù)方程

          (Ⅰ)如圖,以過原點的直線的傾斜角θ為參數(shù),求圓x2y2x=0的參數(shù)方程;

          (Ⅱ)在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為 (s為參數(shù)),曲線C的參數(shù)方程為 (t為參數(shù)),若lC相交于A,B兩點,求AB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】x2y2=1上任意一點P,過點P作兩直線分別交圓于A,B兩點,且∠APB=60°,則|PA|2+|PB|2的取值范圍為___

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)經(jīng)過的直線和橢圓交于兩點,交拋物線于兩點, 是拋物線的焦點,是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨機(jī)詢問某大學(xué)40名不同性別的大學(xué)生在購買食物時是否讀營養(yǎng)說明,得到如下列聯(lián)表:

          總計

          讀營養(yǎng)說明

          16

          8

          24

          不讀營養(yǎng)說明

          4

          12

          16

          總計

          20

          20

          40

          (1)根據(jù)以上列聯(lián)表進(jìn)行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認(rèn)為性別與是否讀營養(yǎng)說明之間有關(guān)系?

          (2)從被詢問的16名不讀營養(yǎng)說明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學(xué)期望).

          (注: ,其中為樣本容量)

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以該直角坐標(biāo)系的原點 為極點, 軸的非負(fù)半軸為極軸的極坐標(biāo)系下,圓 的方程為
          (1)求直線 的普通方程和圓 的圓心的極坐標(biāo);
          (2)設(shè)直線 和圓 的交點為 、 ,求弦 的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) ,其中是自然對數(shù)的底數(shù).

          (Ⅰ)求曲線在點處的切線方程;

          (Ⅱ)令,討論的單調(diào)性并判斷有無極值,有極值時求出極值.

          查看答案和解析>>

          同步練習(xí)冊答案