【題目】如圖,直三棱柱中,底面是邊長為2的等邊三角形,點(diǎn)D,E分別是
的中點(diǎn).
(1)證明:平面
;
(2)若,證明:
平面
【答案】(1)證明見解析
(2)證明見解析
【解析】
(1) 連接,根據(jù)中位線可得
,根據(jù)線面平行的判定定理可得
平面
;
(2)根據(jù)直棱柱可得,根據(jù)等邊三角形可得
,根據(jù)線面垂直的判定定理可得
平面
,再根據(jù)性質(zhì)定理可得
,根據(jù)勾股定理
可得
,最后根據(jù)線面垂直的判定定理可得
平面
.
證明:(1)連接,如圖所示:
在直三棱柱中,側(cè)面
是矩形,
因?yàn)辄c(diǎn)E是的中點(diǎn),所以點(diǎn)E是
的中點(diǎn)
又因?yàn)辄c(diǎn)D是BC的中點(diǎn),所以,
因?yàn)?/span>平面
,
平面
,
所以平面
(2)連接,如圖所示:
在直三棱柱中,
因?yàn)?/span>平面
,
平面
,所以
又因?yàn)榈酌?/span>是等邊三角形,D為BC的中點(diǎn),
所以,又
,
所以平面
,又
平面
所以
由,得
,又
所以
所以,所以
,即
平面
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,是邊長為2的正三角形,
平面ABC,平面
平面ABC,
,且
.
(1)若,求證:
平面BDE;
(2)若二面角為
,求直線CD與平面BDE所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
;直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
分別交于
,
兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若點(diǎn)的極坐標(biāo)為
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”.類似地,我們?cè)趶?fù)數(shù)集C上也可以定義一個(gè)稱為“序”的關(guān)系,記為“>”.定義如下:對(duì)于任意兩個(gè)復(fù)數(shù):當(dāng)且僅當(dāng)“
”或“
”且“
”.按上述定義的關(guān)系“>”,給出以下四個(gè)命題:
①若,則
;
②若,則
;
③若,則對(duì)于任意
;
④對(duì)于復(fù)數(shù),若
,則
.
其中所有真命題的序號(hào)為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且點(diǎn)
在橢圓
上.
(1)求橢圓的方程;
(2)若橢圓的焦點(diǎn)在
軸上,點(diǎn)
為坐標(biāo)原點(diǎn),射線
、
分別與橢圓
交于點(diǎn)
、點(diǎn)
,且
,試判斷直線
與圓
:
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定數(shù)列,若數(shù)列
中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.
(1)已知數(shù)列的通項(xiàng)公式為
,試判斷
是否為封閉數(shù)列,并說明理由;
(2)已知數(shù)列滿足
且
,設(shè)
是該數(shù)列
的前
項(xiàng)和,試問:是否存在這樣的“封閉數(shù)列”
,使得對(duì)任意
都有
,且
,若存在,求數(shù)列
的首項(xiàng)
的所有取值;若不存在,說明理由;
(3)證明等差數(shù)列成為“封閉數(shù)列”的充要條件是:存在整數(shù)
,使
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為
,右焦點(diǎn)到直線
的距離為1.
求橢圓的標(biāo)準(zhǔn)方程;
若P為橢圓上的一點(diǎn)
點(diǎn)P不在y軸上
,過點(diǎn)O作OP的垂線交直線
于點(diǎn)Q,求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com