日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=sinxcos2x,下列結(jié)論正確的是(
          A.y=f(x)的圖象關(guān)于 對稱
          B.y=f(x)的圖象關(guān)于 對稱
          C.y=f(x)的圖象關(guān)于y軸對稱
          D.y=f(x)不是周期函數(shù)

          【答案】A
          【解析】解:對于函數(shù)f(x)=sinxcos2x,
          ∵f(π﹣x)=sin(π﹣x)cos2(π﹣x)=sinxcos2x=f(x),
          ∴f(x)關(guān)于直線x= 對稱,故A正確,B不正確.
          根據(jù)f(﹣x)=﹣sinxcos2x=﹣f(x),故函數(shù)為奇函數(shù),它的圖象關(guān)于x軸對稱,故排除C.
          ∵f(x+2π)=sin(2π+x)cos2(2π+x)=sinxcos2x=f(x),
          ∴2π是函數(shù)y=f(x)的周期,故D錯誤.
          故選:A.
          【考點精析】根據(jù)題目的已知條件,利用正弦函數(shù)的對稱性的相關(guān)知識可以得到問題的答案,需要掌握正弦函數(shù)的對稱性:對稱中心;對稱軸

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】解不等式x2﹣(a+ )x+1<0(a≠0)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某餐館一天中要購買A,B兩種蔬菜每斤的價格分別為2元和3元,根據(jù)需要,A種蔬菜至少要買6斤,B種蔬菜至少要買4斤,而且一天中購買這兩種蔬菜的總費用不能超過60元.

          (1)寫出一天中A種蔬菜購買的數(shù)量x和B種蔬菜購買的數(shù)量y之間的不等式組;
          (2)在下面給定的坐標(biāo)系中畫出(1)中不等式組表示的平面區(qū)域(用陰影表示),并求出它的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某單位擬建一個扇環(huán)形狀的花壇(如圖所示),按設(shè)計要求扇環(huán)的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為x米,圓心角為θ(弧度).
          (1)求θ關(guān)于x的函數(shù)關(guān)系式;
          (2)已知對花壇的邊緣(實線部分)進(jìn)行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用之比為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出y的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】算法流程圖如圖所示,則輸出的結(jié)果是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正項數(shù)列{an}滿足a1=1,(n+1)a2n+1+an+1an﹣na =0,數(shù)列{bn}的前n項和為Sn且Sn=1﹣bn
          (1)求{an}和{bn}的通項;
          (2)令cn= , ①求{cn}的前n項和Tn
          ②是否存在正整數(shù)m滿足m>3,c2 , c3 , cm成等差數(shù)列?若存在,請求出m;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分別為AB,A1C1 , BC的中點.
          求證:
          (1)C1P∥平面MNC;
          (2)平面MNC⊥平面ABB1A1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點M(﹣2,0),N(2,0),動點P滿足條件 .記動點P的軌跡為W.
          (1)求W的方程;
          (2)若A,B是W上的不同兩點,O是坐標(biāo)原點,求 的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列{an}的前n項和為Sn , a1=1,且nan+1=(n+2)Sn , n∈N*
          (1)求證:數(shù)列 為等比數(shù)列;
          (2)求數(shù)列{Sn}的前n項和Tn

          查看答案和解析>>

          同步練習(xí)冊答案