【題目】已知橢圓的左、右兩個(gè)焦點(diǎn)分別為
,離心率
,短軸長(zhǎng)為2.
(1)求橢圓的方程;
(2)點(diǎn)為橢圓上的一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),
的延長(zhǎng)線與橢圓交于
點(diǎn),
的延長(zhǎng)線與橢圓交于
點(diǎn),求
面積的最大值.
【答案】(1)橢圓的標(biāo)準(zhǔn)方程為 (2)
面積的最大值為
【解析】試題分析:(1) 由題意得,再由
,
標(biāo)準(zhǔn)方程為
;(2)①當(dāng)
的斜率不存在時(shí),不妨取
; ②當(dāng)
的斜率存在時(shí),設(shè)
的方程為
,聯(lián)立方程組
,又直線
的距離
點(diǎn)
到直線
的距離為
面積的最大值為
.
試題解析:(1) 由題意得,解得
,
∵,∴
,
,
故橢圓的標(biāo)準(zhǔn)方程為
(2)①當(dāng)直線的斜率不存在時(shí),不妨取
,
故;
②當(dāng)直線的斜率存在時(shí),設(shè)直線
的方程為
,
聯(lián)立方程組,
化簡(jiǎn)得,
設(shè)
點(diǎn)到直線
的距離
因?yàn)?/span>是線段
的中點(diǎn),所以點(diǎn)
到直線
的距離為
,
∴
綜上, 面積的最大值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線方程為x2=2py(p>0),其焦點(diǎn)為F,點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)焦點(diǎn)F作斜率為k(k≠0)的直線與拋物線交于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作拋物線的兩條切線,設(shè)兩條切線交于點(diǎn)M.
(1)求 ;
(2)設(shè)直線MF與拋物線交于C,D兩點(diǎn),且四邊形ACBD的面積為 ,求直線AB的斜率k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓:
的離心率為
,
為橢圓
的右焦點(diǎn),
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為原點(diǎn),
為橢圓上一點(diǎn),
的中點(diǎn)為
,直線
與直線
交于點(diǎn)
,過(guò)
作
,交直線
于點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若P兩條異面直線l,m外的任意一點(diǎn),則( )
A.過(guò)點(diǎn)P有且僅有一條直線與l,m都平行
B.過(guò)點(diǎn)P有且僅有一條直線與l,m都垂直
C.過(guò)點(diǎn)P有且僅有一條直線與l,m都相交
D.過(guò)點(diǎn)P有且僅有一條直線與l,m都異面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間四邊形ABCD,E、H分別是AB、AD的中點(diǎn),F(xiàn)、G分別是邊BC、DC的三等分點(diǎn)(如圖),
求證:
(1)對(duì)角線AC、BD是異面直線;
(2)直線EF和HG必交于一點(diǎn),且交點(diǎn)在AC上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(CUT)=( )
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U=R,集合A={x|x﹣2<0},B={x|﹣1<x<1},求:
(1)A∩B并說(shuō)明集合A和集合B的關(guān)系,
(2)AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓
(
)的離心率為
,其左焦點(diǎn)到點(diǎn)
的距離為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線
與橢圓
相交于
、
兩點(diǎn)(
、
不是左右頂點(diǎn)),且以
為直徑的圓過(guò)橢圓
的右頂點(diǎn),求證:直線
過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com