日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知空間四邊形ABCD,E、H分別是AB、AD的中點,F(xiàn)、G分別是邊BC、DC的三等分點(如圖),
          求證:
          (1)對角線AC、BD是異面直線;
          (2)直線EF和HG必交于一點,且交點在AC上.

          【答案】
          (1)證明:假設(shè)對角線AC、BD在同一平面α內(nèi),

          則A、B、C、D都在平面α內(nèi),這與ABCD是空間四邊形矛盾,

          ∴AC、BD是異面直線.


          (2)證明:∵E、H分別是AB、AD的中點,∴EH BD.

          又F、G分別是BC、DC的三等分點,

          ∴FG BD.∴EH∥FG,且EH<FG.

          ∴FE與GH相交.

          設(shè)交點為O,又O在GH上,GH在平面ADC內(nèi),∴O在平面ADC內(nèi).

          同理,O在平面ABC內(nèi).

          從而O在平面ADC與平面ABC的交線AC上.


          【解析】(1)利用反證法證明對角線AC、BD是共面直線,推出矛盾,從而證明是異面直;(2)說明直線EF和HG必交于一點,然后證明這點在平面ADC內(nèi).又在平面ABC內(nèi),必在它們的交線AC上.
          【考點精析】認真審題,首先需要了解平面的基本性質(zhì)及推論(如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi);過不在一條直線上的三點,有且只有一個平面;如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線),還要掌握異面直線的判定(過平面外一點與平面內(nèi)一點的直線和平面內(nèi)不經(jīng)過該點的直線是異面直線.(不在任何一個平面內(nèi)的兩條直線))的相關(guān)知識才是答題的關(guān)鍵.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】直線 經(jīng)過 兩點,那么直線 的傾斜角的取值范圍(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,底面△ABC為等腰直角三角形,∠B=90°,D為棱BB1上一點,且平面DA1C⊥平面AA1C1C.
          (1)求證:D點為棱BB1的中點;
          (2)判斷四棱錐A1﹣B1C1CD和C﹣A1ABD的體積是否相等,并證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù), . 

          (Ⅰ)當時,求函數(shù)的極值;

          (Ⅱ)當時,討論函數(shù)單調(diào)性;

          (Ⅲ)是否存在實數(shù),對任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)數(shù)列{an}滿足a1+3a2+32a3+…+3n1an= (n∈N*).
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)bn= ,求數(shù)列{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的左、右兩個焦點分別為,離心率,短軸長為2.

          (1)求橢圓的方程;

          (2)點為橢圓上的一動點(非長軸端點),的延長線與橢圓交于點, 的延長線與橢圓交于點,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知集合M={x|≤1},N={x|y=lg(1﹣x)},則下列關(guān)系中正確的是( 。
          A.(RM)∩N=
          B.M∪N=R
          C.MN
          D.(RM)∪N=R

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,定圓C半徑為2,A為圓C上的一個定點,B為圓C上的動點,若點A,B,C不共線,且| | |對任意t∈(0,+∞)恒成立,則 =

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知集合.

          (1)若,問是否存在使;

          (2)對于任意的,是否一定有?并證明你的結(jié)論.

          查看答案和解析>>

          同步練習冊答案