【題目】孫子定理是中國古代求解一次同余式組的方法,是數(shù)論中一個重要定理,最早可見于中國南北朝時期的數(shù)學著作《孫子算經(jīng)》,年英國來華傳教士偉烈亞力將其問題的解法傳至歐洲,
年英國數(shù)學家馬西森指出此法符合
年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.這個定理講的是一個關于整除的問題,現(xiàn)有這樣一個整除問題:將
至
這
個整數(shù)中能被
除余
且被
除余
的數(shù)按由小到大的順序排成一列構成一數(shù)列,則此數(shù)列的項數(shù)是( )
A.B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】某市數(shù)學教研室對全市2018級15000名的高中生的學業(yè)水平考試的數(shù)學成績進行調研,隨機選取了200名高中生的學業(yè)水平考試的數(shù)學成績作為樣本進行分析,將結果列成頻率分布表如下:
數(shù)學成績 | 頻數(shù) | 頻率 |
5 | 0.025 | |
15 | 0.075 | |
50 | 0.25 | |
70 | 0.35 | |
45 | 0.225 | |
15 | 0.075 | |
合計 | 200 | 1 |
根據(jù)學業(yè)水平考試的數(shù)學成績將成績分為“優(yōu)秀”、“合格”、“不合格”三個等級,其中成績大于或等于80分的為“優(yōu)秀”,成績小于60分的為“不合格”,其余的成績?yōu)椤昂细瘛?/span>.
(1)根據(jù)頻率分布表中的數(shù)據(jù),估計全市學業(yè)水平考試的數(shù)學成績的眾數(shù)、中位數(shù)(精確到0.1);
(2)市數(shù)學教研員從樣本中又隨機選取了名高中生的學業(yè)水平考試的數(shù)學成績,如果這
的最小值;
(3)估計全市2018級高中生學業(yè)水平考試“不合格”的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙紐線最早于1694年被瑞士數(shù)學家雅各布·伯努利用來描述他所發(fā)現(xiàn)的曲線.在平面直角坐標系中,把到定點
,
距離之積等于
(
)的點的軌跡稱為雙紐線C.已知點
是雙紐線C上一點,下列說法中正確的有( )
①雙紐線C關于原點O中心對稱; ②;
③雙紐線C上滿足的點P有兩個; ④
的最大值為
.
A.①②B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某十字路口的花圃中央有一個底面半徑為
的圓柱形花柱,四周斑馬線的內側連線構成邊長為
的正方形.因工程需要,測量員將使用儀器沿斑馬線的內側進行測量,其中儀器
的移動速度為
,儀器
的移動速度為
.若儀器
與儀器
的對視光線被花柱阻擋,則稱儀器
在儀器
的“盲區(qū)”中.
(1)如圖,斑馬線的內側連線構成正方形
,儀器
在點
處,儀器
在
上距離點
處,試判斷儀器
是否在儀器
的“盲區(qū)”中,并說明理由;
(2)如圖,斑馬線的內側連線構成正方形
,儀器
從點
出發(fā)向點
移動,同時儀器
從點
出發(fā)向點
移動,在這個移動過程中,儀器
在儀器
的“盲區(qū)”中的時長為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是
,以極點為原點,極軸為
軸非負半軸建立平面直角坐標系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)在(1)中,設曲線經(jīng)過伸縮變換
得到曲線
,設曲線
上任意一點為
,當點
到直線
的距離取最大值時,求此時點
的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線:
(
為參數(shù)),曲線
:
(
為參數(shù)).
(1)設與
相交于
兩點,求
;
(2)若把曲線上各點的橫坐標壓縮為原來的
倍,縱坐標壓縮為原來的
倍,得到曲線
,設點P是曲線
上的一個動點,求它到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》中有一分鹿問題:“今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問各得幾何.”在這個問題中,大夫、不更、簪裊、上造、公士是古代五個不同爵次的官員,現(xiàn)皇帝將大夫、不更、簪梟、上造、公士這5人分成兩組(一組2人,一組3人),派去兩地執(zhí)行公務,則大夫、不更恰好在同一組的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)若曲線上點
處的切線過點
,求函數(shù)
的單調減區(qū)間;
(II)若函數(shù)在區(qū)間
內無零點,求實數(shù)
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com