【題目】如圖,在四棱錐中,底面
是直角梯形,側(cè)棱
底面
,
垂直于
和
,
為棱
上的點,
.
(1)若為棱
的中點,求證:
平面
;
(2)當時,求平面
與平面
所成的銳二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)取線段的中點
,連結(jié)
,
,推導出四邊形
為平行四邊形,從而
,由此能證明
平面
.
(2)以為坐標原點,建立分別以
,
,
所在直線為
軸,
軸,
軸的空間直角坐標系,利用向量法能求出平面
與平面
所成的銳二面角的余弦值.
(1)證明:取線段的中點
,連接
.
在中,
為中位線
∴且
,
∵且
,
∴且
∴四邊形為平行四邊形.
∴.
∵平面
平面
,
∴平面
.
(2)解:如圖所示以點為坐標原點,建立分別以
、
、
所在的直線為
軸、
軸、
軸建立空間直角坐標系,則
,
于是
設(shè)平面的一個法向量為
,則
,
將坐標代入并取,得
.
另外易知平面的一個法向量為
,
所以平面與平面
所成的銳二面角的余弦為
.
科目:高中數(shù)學 來源: 題型:
【題目】已知一列非零向量滿足:
(其中
是非零常數(shù)).
(1)求數(shù)列的通項公式;
(2)求向量與
夾角
的弧度數(shù)
(3)當時,把
中所有與
共線的向量按原來的順序排成一列,記為
令
為坐標原點,求點列
的極限點D的坐標.(注:若點
坐標為
且
則稱點D
為點列
的極限點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從
開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與
之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出
關(guān)于
的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
點P是曲線C1:(x-2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設(shè)點Q的軌跡為曲線C2.
(Ⅰ)求曲線C1,C2的極坐標方程;
(Ⅱ)射線(ρ>0)與曲線C1,C2分別交于A,B兩點,設(shè)定點M(2,0),求△MAB的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知直線l過點,它的一個方向向量為
.
①求直線l的方程;
②一組直線,
,
,
,
,
都與直線l平行,它們到直線l的距離依次為d,
,
,
,
,
(
),且直線
恰好經(jīng)過原點,試用n表示d的關(guān)系式,并求出直線
的方程(用n、i表示);
(2)在坐標平面上,是否存在一個含有無窮多條直線,
,
,
,
的直線簇,使它同時滿足以下三個條件:①點
;②
,其中
是直線
的斜率,
和
分別為直線
在x軸和y軸上的截距;③
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種:方案一:每滿200元減50元;方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、1個白球的甲箱,裝2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機摸出1個球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
(1)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得優(yōu)惠的概率;
(2)若某顧客選擇方案二,請分別計算該顧客獲得半價優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠的概率;
(3)若小明的購物金額為320元,你覺得小明應該選取哪個方案,為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點為
,
是橢圓上半部分的動點,連接
和長軸的左右兩個端點所得兩直線交
正半軸于
兩點(點
在
的上方或重合).
(1)當面積
最大時,求橢圓的方程;
(2)當時,在
軸上是否存在點
使得
為定值,若存在,求
點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的離心率為
,且
(1)求雙曲線C的方程;
(2)已知直線與雙曲線C交于不同的兩點A,B且線段AB的中點在圓
上,求m的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com