已知函數(shù)
(1)當(dāng)時(shí),討論函數(shù)
的單調(diào)性:
(2)若函數(shù)的圖像上存在不同兩點(diǎn)
,設(shè)線段
的中點(diǎn)為
,使得
在點(diǎn)
處的切線
與直線
平行或重合,則說函數(shù)
是“中值平衡函數(shù)”,切線
叫做函數(shù)
的“中值平衡切線”。試判斷函數(shù)
是否是“中值平衡函數(shù)”?若是,判斷函數(shù)
的“中值平衡切線”的條數(shù);若不是,說明理由.
(1)函數(shù)的遞增區(qū)間是
,遞減區(qū)間是
;(2)當(dāng)
時(shí),函數(shù)
是“中值平衡函數(shù)”且函數(shù)
的“中值平衡切線”有無數(shù)條,當(dāng)
時(shí),函數(shù)
不是“中值平衡函數(shù)”.
解析試題分析:(1)對(duì)進(jìn)行討論,求導(dǎo)數(shù),令導(dǎo)數(shù)大于0或小于0,求單調(diào)遞增或遞減區(qū)間;(2)先假設(shè)它是“中值平衡函數(shù)”,設(shè)出
兩點(diǎn),討論
和
的情況,看是否符合題意.
試題解析:(1) 1分
當(dāng)即
時(shí),
,函數(shù)
在定義域
上是增函數(shù); 2分
當(dāng)即
時(shí),由
得到
或
, 4分
所以:當(dāng)時(shí),函數(shù)
的遞增區(qū)間是
和
,遞減區(qū)間是
; 5分
當(dāng)即
時(shí),由
得到:
,
所以:當(dāng)時(shí),函數(shù)
的遞增區(qū)間是
,遞減區(qū)間是
; 7分
(2)若函數(shù)是“中值平衡函數(shù)”,則存在
(
)使得
即
,
即,(*) 4分
當(dāng)時(shí),(*)對(duì)任意的
都成立,所以函數(shù)
是“中值平衡函數(shù)”,且函數(shù)
的“中值平衡切線”有無數(shù)條; 8分
當(dāng)時(shí),設(shè)
,則方程
在區(qū)間
上有解, 10分
記函數(shù),則
, 12分
所以當(dāng)時(shí),
,即方程
在區(qū)間
上無解,
即函數(shù)不是“中值平衡函數(shù)”. 14分
考點(diǎn):1.求切線的斜率;2.用導(dǎo)數(shù)求函數(shù)的單調(diào)性;3.分類討論思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷
的單調(diào)性(不需證明);
(3)若,存在
,使
,求實(shí)數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),函數(shù)
.
(1)判斷函數(shù)的奇偶性;
(2)若當(dāng)時(shí),
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
為常數(shù)).
(1)當(dāng)時(shí),求
的單調(diào)遞減區(qū)間;
(2)若,且對(duì)任意的
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)若函數(shù)
在
和
上是增函數(shù),在
是減函數(shù),求
的值;
討論函數(shù)
的單調(diào)遞減區(qū)間;
如果存在
,使函數(shù)
,
,在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),在曲線
上是否存在兩點(diǎn)
,使得曲線在
兩點(diǎn)處的切線均與直線
交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說明理由;
(Ⅲ)若在區(qū)間
存在最大值
,試構(gòu)造一個(gè)函數(shù)
,使得
同時(shí)滿足以下三個(gè)條件:①定義域
,且
;②當(dāng)
時(shí),
;③在
中使
取得最大值
時(shí)的
值,從小到大組成等差數(shù)列.(只要寫出函數(shù)
即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2﹣|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com