日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. F1,F(xiàn)2是雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的左右焦點(diǎn),Q是雙曲線上動(dòng)點(diǎn),從左焦點(diǎn)引∠F1QF2的平分線的垂線,垂足為P,則P點(diǎn)的軌跡是( 。┑囊徊糠郑
          A.圓B.橢圓C.雙曲線D.拋物線
          由題意,設(shè)O為F1F2的中點(diǎn),延長(zhǎng)F1P交QF2于A,連接OP
          據(jù)題意知△AQF1為等腰三角形,所以QF1=QA
          ∵|QF1-QF2|=2a
          ∴|QA-QF2|=2a
          即AF2=2a
          ∵OP為△F1F2A的中位線
          ∴OP=a
          故點(diǎn)P的軌跡為以O(shè)為圓心,以a為半徑的圓
          故選A.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          設(shè)拋物線y2=2px(p為常數(shù))的準(zhǔn)線與X軸交于點(diǎn)K,過(guò)K的直線l與拋物線交于A、B兩點(diǎn),則
          OA
          OB
          =______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知雙曲線與橢圓
          x2
          4
          +y2=1
          共焦點(diǎn),它們的離心率之和為
          3
          3
          2
          ;
          (1)求橢圓與雙曲線的離心率e1、e2;
          (2)求雙曲線的標(biāo)準(zhǔn)方程與漸近線方程;
          (3)已知直線l:y=
          1
          2
          x+m
          與橢圓有兩個(gè)交點(diǎn),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓
          x2
          16
          +
          y2
          12
          =1,點(diǎn)P為其上一點(diǎn),F(xiàn)1、F2為橢圓的焦點(diǎn),Q為射線F1P延長(zhǎng)線上一點(diǎn),且|PQ|=|PF2|,設(shè)R為F2Q的中點(diǎn).
          (1)當(dāng)P點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求R形成的軌跡方程;
          (2)設(shè)點(diǎn)R形成的曲線為C,直線l:y=k(x+4
          2
          )與曲線C相交于A、B兩點(diǎn),若∠AOB=90°時(shí),求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知兩點(diǎn)M(-1,0)、N(1,0),動(dòng)點(diǎn)P(x,y)滿足|
          MN
          |•|
          NP
          |-
          MN
          MP
          =0,
          (1)求點(diǎn)P的軌跡C的方程;
          (2)假設(shè)P1、P2是軌跡C上的兩個(gè)不同點(diǎn),F(xiàn)(1,0),λ∈R,
          FP1
          FP2
          ,求證:
          1
          |FP1|
          +
          1
          |FP2|
          =1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知圓C過(guò)定點(diǎn)F(-
          1
          4
          ,0),且與直線x=
          1
          4
          相切,圓心C的軌跡為E,曲線E與直線l:y=k(x+1)(k∈R)相交于A、B兩點(diǎn).
          (I)求曲線E的方程;
          (II)當(dāng)△OAB的面積等于
          10
          時(shí),求k的值;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,圓O與離心率為
          3
          2
          的橢圓T:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)相切于點(diǎn)M(0,1).
          (1)求橢圓T與圓O的方程;
          (2)過(guò)點(diǎn)M引兩條互相垂直的兩直線l1、l2與兩曲線分別交于點(diǎn)A、C與點(diǎn)B、D(均不重合).
          ①若P為橢圓上任一點(diǎn),記點(diǎn)P到兩直線的距離分別為d1、d2,求
          d21
          +
          d22
          的最大值;
          ②若3
          MA
          MC
          =4
          MB
          MD
          ,求l1與l2的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,O為坐標(biāo)原點(diǎn),直線l在x軸和y軸上的截距分別是a和b(a>0,b≠0),且交拋物線y2=2px(p>0)于M(x1,y1),N(x2,y2)兩點(diǎn).
          (1)寫(xiě)出直線l的截距式方程;
          (2)證明:
          1
          y1
          +
          1
          y2
          =
          1
          b
          ;
          (3)當(dāng)a=2p時(shí),求∠MON的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知兩點(diǎn)F1(-
          2
          ,0)
          ,F2(
          2
          ,0)
          ,滿足條件|PF2|-|PF1|=2的動(dòng)點(diǎn)P的軌跡是曲線E,直線l:y=kx-1與曲線E交于A、B兩點(diǎn).
          (Ⅰ)求k的取值范圍;
          (Ⅱ)如果|AB|=6
          3
          ,求直線l的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案