日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ((本小題滿分12分)
          如圖,在四棱錐P—ABCD中,底面ABCD,底面為直角梯形,AD=2,AB=BC=1,PA=
          (Ⅰ)設(shè)MPD的中點,求證:平面PAB;
          (Ⅱ)若二面角B—PC—D的大小為150°,求此四棱錐的體積.
          解法一:(Ⅰ)證明:取PA的中點N,連結(jié)BN、NM,

          在△PAD中,,且;
          ,且,
          所以MNBC,即四邊形BCMN為平行四邊形,.
          平面PAB,平面PAB,故平面PAB.   ……5分
          (Ⅱ)如圖,連結(jié)AC,則二面角B—PC—D的大小等于二面角B—PC—A的大小與二面角D—PC—A的大小的和. 由,又,所以平面PAC,即平面P平面PAC,所以二面角D—PC—A的大小為90°. 于是二面角B—PC—A的大小為60°,過BE,過EF,連結(jié)BF,由三垂線定理知為二面角B—PC—A的平面角.                                               ……9分
          在Rt△ABC中,,又易知△PBC為Rt△,且
          ,解得                    ……11分
          所以四棱錐P—ABCD的體積為                 ……12分

          解法二:以A為坐標(biāo)原點,以AB、AD、AP所在直線為x、y、z軸建立如圖所示的空間直角坐標(biāo)系. 則B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,).   ……2分
          (Ⅱ)由MPD中點知M的坐標(biāo)為(0,1,),所以.
          又平面PAB的法向量可取為,而,即.
          平面PAB,所以平面PAB.                                 ……6分
          (Ⅱ)設(shè)平面PBC的法向量為.
           ∴
          不妨取,則,∴                            
          又設(shè)平面PCD的法向量為.
           ∴ 
          不妨取,則 ∴.                     ……9分
          的方向可知,解得.   ……11分
          所以四棱錐P—ABCD—體積為.                  ……12分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若二面角,直線,直線,則直線所成角的范圍是
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          在正方形中,沿對角線將正方形折成一個直二面角,則點到直線的距離為(     )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          在正方形中,沿對角線將正方形折成一個直二面角,則點到直線的距離為(       )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在棱長為的正方體中,分別是棱的中點.

          (Ⅰ)證明:平面;
          (Ⅱ)證明:;
          (Ⅲ)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,AB是圓O的直徑,CA垂直圓O所在的平面,D是圓周上一點,已知AC=。AD=
          (Ⅰ)求證:平面ADC⊥平面CDB;(Ⅱ)求平面CDB與ADB所成的二面角的正切值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)如圖,在直三棱柱中,、分別是、的中 點,點上,。
          求證:(1)EF∥平面ABC;           
          (2)平面平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若直線過點,且是它的一個法向量,則的方程為            。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)如圖所示,正方形ABCD與直角梯形ADEF所
          在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2。
          (1)求證:AC∥平面BEF;
          (2)求四面體BDEF的體積。

          查看答案和解析>>

          同步練習(xí)冊答案