【題目】下圖是某地5月1日至15日日平均溫度變化的折線圖,日平均溫度高于20度低于27度時(shí)適宜戶外活動(dòng),某人隨機(jī)選擇5月1日至5月14日中的某一天到達(dá)該地停留兩天(包括到達(dá)當(dāng)日).
(1)求這15天日平均溫度的極差和均值;
(2)求此人停留期間只有一天的日平均溫度適宜戶外活動(dòng)的概率;
(3)由折線圖判斷從哪天開始連續(xù)三天日平均溫度的方差最大?(寫出結(jié)論,不要求證明)
【答案】(1)19度,29.6度;(2);(3)從5月7日開始連續(xù)三天的日平均溫度方差最大.
【解析】
(1)由折線圖讀出所有數(shù)據(jù),最高溫度40度,最低溫度為21度,即可求出極差,利用求平均數(shù)的公式直接求平均數(shù);
(2)由折線圖可以得到只有一天的日平均溫度適宜戶外活動(dòng)共有3-4日,7-8日,8-9日,11-12日,14-15日這5種情況,然后利用求古典概型的概率的公式求解
(3)連續(xù)3天數(shù)據(jù)波動(dòng)最大的,則方差最大
解:(1)由折線圖最高日平均溫度40度,最低溫度21度,故日平均溫度的極差為度,
設(shè)日平均溫度的均值為,則
度
(2)由題意此人停留的可能時(shí)間有14種情況,
只有一天的日平均溫度適宜戶外活動(dòng)共有3-4日,7-8日,8-9日,11-12日,14-15日這5種情況,
故概率.
(3)從5月7日開始連續(xù)三天的日平均溫度方差最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,E為AD的中點(diǎn),F為線段PB上的一點(diǎn),∠CDP=120°,AD=3,AP=5,.
(Ⅰ)試確定點(diǎn)F的位置,使得直線EF∥平面PDC;
(Ⅱ)若PB=3BF,求直線AF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了積極穩(wěn)妥疫情期間的復(fù)學(xué)工作,市教育局抽調(diào)5名機(jī)關(guān)工作人員去某街道3所不同的學(xué)校開展駐點(diǎn)服務(wù),每個(gè)學(xué)校至少去1人,若甲、乙兩人不能去同一所學(xué)校,則不同的分配方法種數(shù)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且橢圓
的右頂點(diǎn)到直線
的距離為3.
(1)求橢圓的方程;
(2)過點(diǎn)的直線
與橢圓
交于
,
兩點(diǎn),求
的面積的最大值(
為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在
上的奇函數(shù),且函數(shù)
為偶函數(shù),當(dāng)
時(shí),
,若
有三個(gè)零點(diǎn),則實(shí)數(shù)
的取值集合是( )
A.,
B.
,
C.,
D.
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,一動(dòng)圓與直線
相切且與圓
外切.
(1)求動(dòng)圓圓心的軌跡
的方程;
(2)若經(jīng)過定點(diǎn)的直線
與曲線
交于
兩點(diǎn),
是線段
的中點(diǎn),過
作
軸的平行線與曲線
相交于點(diǎn)
,試問是否存在直線
,使得
,若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)組織“學(xué)習(xí)強(qiáng)國”的知識(shí)競(jìng)賽,從參加競(jìng)賽的市民中抽出40人,將其成績(jī)分成以下6組:第1組,第2組
,第3組
,第4組
,第5組
,第6組
,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為( )
A.1,3,4B.2,3,3C.2,2,4D.1,1,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形
,
,
平面
,
是棱
上的一點(diǎn).
(1)證明:平面平面
;
(2)若,
是
的中點(diǎn),
,
,且二面角
的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形中,
,
,
為
的中點(diǎn),將
沿著
折起,使得
.
(1)求證:;
(2)若是
的中點(diǎn),求直線
與平面
的所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com