日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示的多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,EAD的中點(diǎn),F為線段PB上的一點(diǎn),∠CDP120°,AD3,AP5,

          )試確定點(diǎn)F的位置,使得直線EF∥平面PDC;

          )若PB3BF,求直線AF與平面PBC所成角的正弦值.

          【答案】)當(dāng)點(diǎn)FBP中點(diǎn)時(shí),使得直線EF∥平面PDC;(

          【解析】

          )設(shè)FBP中點(diǎn),取AP中點(diǎn)G,連結(jié)EF、EG、FG,推導(dǎo)出GFABCD,EGDP,從而平面GEF∥平面PDC,進(jìn)而當(dāng)點(diǎn)FBP中點(diǎn)時(shí),使得直線EF∥平面PDC

          )以D為原點(diǎn),DCx軸,在平面PDC中過DCD垂線為y軸,DAz軸,建立空間直角坐標(biāo)系,求得平面PBC的一個(gè)法向量,的坐標(biāo),代入公式sinθ求解.

          )設(shè)FBP中點(diǎn),取AP中點(diǎn)G,連結(jié)EF、EG、FG

          AD⊥平面PDC,四邊形ABCD為平行四邊形,EAD的中點(diǎn),

          GFABCDEGDP,

          EGFGGDPCDD,∴平面GEF∥平面PDC

          EF平面GEF,

          ∴當(dāng)點(diǎn)FBP中點(diǎn)時(shí),使得直線EF∥平面PDC

          )以D為原點(diǎn),DCx軸,在平面PDC中過DCD垂線為y軸,DAz軸,建立空間直角坐標(biāo)系,

          EAD的中點(diǎn),F為線段PB上的一點(diǎn),∠CDP120°,AD3AP5,

          cos120°,解得CD2

          所以A00,3),B2,0,3),P(﹣2,2,0),C2,0,0),

          設(shè)Fa,bc),由PB3BF,得,

          即(a2,b,c3(﹣8,2,﹣3),

          解得ab,c2,∴F,2),

          ,﹣1),00,3),(﹣4,20),

          設(shè)平面PBC的一個(gè)法向量x,y,z),

          ,取x1,得1,,0),

          設(shè)直線AF與平面PBC所成角為θ,

          則直線AF與平面PBC所成角的正弦值為:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知平面,B,,,且,,且,則下列敘述錯(cuò)誤的是(

          A.直線是異面直線

          B.直線上的射影可能與平行

          C.有且只有一個(gè)平面與平行

          D.有且只有一個(gè)平面與垂直

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo)系,過點(diǎn)作傾斜角為)的直線交曲線、兩點(diǎn).

          1)求曲線的直角坐標(biāo)方程,并寫出直線的參數(shù)方程;

          2)過點(diǎn)的另一條直線垂直,且與曲線交于兩點(diǎn),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某快餐連鎖店,每天以200元的價(jià)格從總店購進(jìn)早餐,然后以每份10元的價(jià)格出售.40份以內(nèi),總店收成本價(jià)每份5元,當(dāng)天不能出售的早餐立即以1元的價(jià)格被總店回收,超過40份的未銷售的部分總店成本價(jià)回收,然后進(jìn)行環(huán)保處理.如果銷售超過40份,則超過40份的利潤需上繳總店.該快餐連鎖店記錄了100天早餐的銷售量(單位:份),整理得下表:

          日銷售量

          25

          30

          35

          40

          45

          50

          頻數(shù)

          10

          16

          28

          24

          14

          8

          完成下列問題:

          1)寫出每天獲得利潤與銷售早餐份數(shù))的函數(shù)關(guān)系式;

          2)估計(jì)每天利潤不低于150元的概率;

          3)估計(jì)該快餐店每天的平均利潤.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,在平面五邊形中,是梯形,,,是等邊三角形.現(xiàn)將沿折起,連接、得如圖②的幾何體.

          1)若點(diǎn)的中點(diǎn),求證:平面

          2)若,在棱上是否存在點(diǎn),使得二面角的余弦值為?若存在,求的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面是直角梯形,,,又,,

          1)求證:平面

          2)求與平面所成角的余弦值;

          3)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐的底面為直角梯形,,,平面平面,點(diǎn)上,且


          (Ⅰ)證明:平面平面;

          (Ⅱ)當(dāng)異面直線所成角的余弦值為時(shí),求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分14分)已知過原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn)

          1)求圓的圓心坐標(biāo);

          2)求線段的中點(diǎn)的軌跡的方程;

          3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下圖是某地51日至15日日平均溫度變化的折線圖,日平均溫度高于20度低于27度時(shí)適宜戶外活動(dòng),某人隨機(jī)選擇51日至514日中的某一天到達(dá)該地停留兩天(包括到達(dá)當(dāng)日).

          1)求這15天日平均溫度的極差和均值;

          (2)求此人停留期間只有一天的日平均溫度適宜戶外活動(dòng)的概率;

          (3)由折線圖判斷從哪天開始連續(xù)三天日平均溫度的方差最大?(寫出結(jié)論,不要求證明)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案