本小題

滿分12分
如圖,在直三棱柱ABC—A
1B
1C
1中,AC=1,AB=

,BC=

,AA
1=

。
(I)求證:A
1B⊥B
1C;
(II)求二面角A
1—B
1C—B的大小。

I)由AC=1,AB=

,BC=

知AC
2+AB
2=BC
2,
所以AC⊥AB。
因為AB

C—A
1B
1C
1是直三棱柱,面ABB
1A
1⊥面ABC,
所以AC⊥面ABB
1A
1!3分
由

,知側(cè)面ABB
1A
1是正方形,連結(jié)AB
1,
所以A
1B⊥AB
1
。
由三垂線定理得A
1B⊥B
1C。 ………………6分
(II)作BD⊥B
1C,垂足為D,連結(jié)A
1D。
由(I)知,A
1B⊥B
1C,則B
1C⊥面A
1BD,
于是B
1C⊥A
1D,
則∠A
1DB為二面角
A
1—B
1C—B的平面角!8分

∴Rt△A
1B
1C≌Rt△B
1BC,

故二面角A
1—B
1C—B的大小為

………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖5,在三棱柱

中,側(cè)棱

底面

,

為

的中點,

,

.
(1)求證:

平面

;
(2) 求四棱錐

的體積.

圖5
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,在四棱錐

中,

,底面

為正方形,

分別是

的中點.
(1) 求證:

;
(2)

求二面角

的大小;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知

中,

,

平面

,


分別為

上的動點.
(1)若

,求證:平面

平面

;
(2)若

,

,求平面

與平面

所成的銳二面角的大小.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖:在正方體
ABCD—
A1B1C1D1中,
M、
N、
P分別為所在邊的中點,
O為面對角線
A1C1的中點.
(1) 求證:面
MNP∥面
A1C1B;(2) 求證:
MO⊥面
A1C1.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,在四棱錐

中,底面

為矩形,平面

⊥平面

,

,

,

為

的中點,

求證:
(1)

∥平面

;
(2)平面

平面

.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
如圖,在三棱柱

中,側(cè)面

,

均為正方形,∠

,點

是棱

的中點.

(Ⅰ)求證:

⊥平面

;
(Ⅱ)求二面角

的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,一幾何體的三視圖如下:則這個幾何體是( )

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在平面幾何中有如下結(jié)論:正三角形ABC的內(nèi)切圓面積為S
1,外接圓面積為S
2,則

,推廣到空間可以得到類似結(jié)論;已知正四面體P—ABC的內(nèi)切球體積為V
1,外接球體積為V
2,則
;
查看答案和解析>>