日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足acosC=b﹣ c. (Ⅰ)求角A的大小;
          (Ⅱ)若B= ,AC=4,求BC邊上的中線AM的長.

          【答案】解:(Ⅰ)∵acosC=b﹣ c, 由正弦定理可得sinAcosC=sinB﹣ sinC,
          ∵sinB=sin(A+C)=sinAcosC+cosAsinC,
          ∴cosAsinC= sinC,
          ∵sinC≠0,
          ∴cosA= ,
          ∴A= ,
          (Ⅱ)由A=B= ,則C= ,
          ∴BC=AC=4,AB=4
          ∴AM=2,
          由余弦定理可得AM2=BM2+AB2﹣2BMABcosB=4+48﹣16 =28,
          ∴AM=2
          【解析】(Ⅰ)根據(jù)正弦定理和兩角和的正弦公式即可求出;(Ⅱ)利用余弦定理即可求出.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】函數(shù)f(x)=lnx+ +ax(a∈R),g(x)=ex+
          (1)討論f(x)的極值點的個數(shù);
          (2)若對于x>0,總有f(x)≤g(x).(i)求實數(shù)a的取值范圍;(ii)求證:對于x>0,不等式ex+x2﹣(e+1)x+ >2成立.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (1)求函數(shù)的單調區(qū)間;

          (2)求證:函數(shù)在公共定義域內,恒成立;

          (3)若存在兩個不同的實數(shù),,滿足,求證:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】若曲線上分別存在點

          和點,使得是以原點為直角頂點的直角三角形,且斜邊的中點在軸上則

          范圍是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知圓軸的左右交點分別為,與軸正半軸的交點為.

          (1)若直線過點并且與圓相切,求直線的方程;

          (2)若點是圓上第一象限內的點,直線分別與軸交于點,點是線段的中點,直線,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知三棱柱中, 平面, , 分別是棱的中點.

          (1)求證: 平面;

          (2)求證: 平面.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 ,(θ為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程是ρ= sinθ+cosθ,曲線C3的極坐標方程是θ= . (Ⅰ)求曲線C1的極坐標方程;
          (Ⅱ)曲線C3與曲線C1交于點O,A,曲線C3與曲線C2曲線交于點O,B,求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
          (Ⅰ)證明:平面ACD⊥平面ABC;
          (Ⅱ)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D﹣AE﹣C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在長方體中,若分別是棱的中點,則必有( )

          A.

          B.

          C. 平面平面

          D. 平面平面

          查看答案和解析>>

          同步練習冊答案