【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓
過點(diǎn)
,
,
分別為橢圓
的右下頂點(diǎn),且
.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓
內(nèi),滿足直線
,
的斜率乘積為
,且直線
,
分別交橢圓
于點(diǎn)
,
.
①若,
關(guān)于
軸對稱,求直線
的斜率;
②若和
的面積分別為
,求
.
【答案】(1).(2)①
,②
.
【解析】
(1)由知,
,又橢圓
過點(diǎn)
,所以將點(diǎn)代入橢圓方程求解即可. (2)①設(shè)直線
的斜率為
,則直線
的方程為
,與橢圓聯(lián)立可求出M點(diǎn)坐標(biāo);又直線
,
的斜率乘積為
,可知直線
的方程
,從而可求出N點(diǎn)坐標(biāo),利用
,
關(guān)于
軸對稱,列出等式
,從而解出
的值. (2)②利用三角形面積公式,將
轉(zhuǎn)化為
,代入點(diǎn)坐標(biāo)計(jì)算可求出結(jié)果.
(1)由知,
,
又橢圓過點(diǎn)
,所以
,
解得 所以橢圓
的方程為
.
(2)設(shè)直線的斜率為
,則直線
的方程為
.
聯(lián)立
消去并整理得,
,
解得,
,所以
.
因?yàn)橹本,
的斜率乘積為
,所以直線
的方程
.
聯(lián)立 消去
并整理得,
,
解得,
,所以
.
①因?yàn)?/span>,
關(guān)于
軸對稱,所以
,
即,解得
.
當(dāng)時,點(diǎn)
在橢圓
外,不滿足題意.
所以直線的斜率為
.
②聯(lián)立 解得
.
所以
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
,
.
(1)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)且
時.
①若有兩個極值點(diǎn)
,
(
),求證:
;
②若對任意的,都有
成立,求正實(shí)數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新能源汽車的春天來了!2018年3月5日上午,李克強(qiáng)總理做政府工作報(bào)告時表示,將新能源汽車車輛購置稅優(yōu)惠政策再延長三年,自2018年1月1日至2020年12月31日,對購置的新能源汽車免征車輛購置稅.某人計(jì)劃于2018年5月購買一輛某品牌新能源汽車,他從當(dāng)?shù)卦撈放其N售網(wǎng)站了解了近五個月的實(shí)際銷量如下表:
月份 | 2017.12 | 2018.01 | 2018.02 | 2018.03 | 2018.04 |
月份編號 | 1 | 2 | 3 | 4 | 5 |
銷量(萬量) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌噷?shí)際銷量(萬輛)與月份編號
之間的相關(guān)關(guān)系.請用最小二乘法求
關(guān)于
的線性回歸方程
,并預(yù)測2018年5月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量;
(2)2018年6月12日,中央財(cái)政和地方財(cái)政將根據(jù)新能源汽車的最大續(xù)航里程(新能源汽車的最大續(xù)航里程是指理論上新能源汽車所裝的燃料或電池所能夠提供給車跑的最遠(yuǎn)里程)對購車補(bǔ)貼進(jìn)行新一輪調(diào)整.已知某地?cái)M購買新能源汽車的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對其中的200名消費(fèi)者的購車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
補(bǔ)貼金額預(yù)期值區(qū)間(萬元) | ||||||
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位擬購買新能源汽車的消費(fèi)者對補(bǔ)貼金額的心理預(yù)期值的方差
及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替,估計(jì)值精確到0.1);
(ii)將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購買新能源汽車的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取的3人中對補(bǔ)貼金額的心理預(yù)期值不低于3萬元的人數(shù)為,求
的分布列及數(shù)學(xué)期望
.
附:①回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,
;②
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),下述四個結(jié)論:
①是偶函數(shù);
②的最小正周期為
;
③的最小值為0;
④在
上有3個零點(diǎn)
其中所有正確結(jié)論的編號是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
為
邊上一點(diǎn),
,
.
(1)證明:平面平面
.
(2)若,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某景區(qū)是一個以為圓心,半徑為
的圓形區(qū)域,道路
,
成
角,且均和景區(qū)邊界相切,現(xiàn)要修一條與景區(qū)相切的觀光木棧道
,點(diǎn)
,
分別在
和
上,修建的木棧道
與道路
,
圍成的三角地塊
.
(1)求修建的木棧道與道路
,
圍成的三角地塊
面積的最小值;
(2)若景區(qū)中心與木棧道
段連線的
.
①將木棧道的長度表示為
的函數(shù),并指定定義域;
②求出木棧道的長度最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為實(shí)現(xiàn)國民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅(jiān)的力度,某地區(qū)在2015年以前的年均脫貧率(脫貧的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為70%,2015年開始全面實(shí)施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加戶數(shù)占2019年貧困總戶數(shù)的比)及該項(xiàng)目的脫貧率見下表:
實(shí)施項(xiàng)目 | 種植業(yè) | 養(yǎng)殖業(yè) | 工廠就業(yè) |
參加占戶比 | 45% | 45% | 10% |
脫貧率 | 96% | 96% | 90% |
那么2019年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的( )倍.
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為拋物線
上一點(diǎn),斜率分別為
,
的直線PA,PB分別交拋物線于點(diǎn)A,B(不與點(diǎn)P重合).
(1)證明:直線AB的斜率為定值;
(2)若△ABP的內(nèi)切圓半徑為.
(i)求△ABP的周長(用k表示);
(ii)求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓
的右焦點(diǎn)為
,離心率為
,過點(diǎn)
的直線
與
相交于
兩點(diǎn),點(diǎn)
為線段
的中點(diǎn).
(1)當(dāng)的傾斜角為
時,求直線
的方程;
(2)試探究在軸上是否存在定點(diǎn)
,使得
為定值?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com