日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,離心率為,過(guò)點(diǎn)的直線相交于兩點(diǎn),點(diǎn)為線段的中點(diǎn).

          1)當(dāng)的傾斜角為時(shí),求直線的方程;

          2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          【答案】12)存在;定點(diǎn)

          【解析】

          1)由題得,解得,由,得,可得橢圓方程,與直線方程聯(lián)立,利用韋達(dá)定理求出中點(diǎn)坐標(biāo),進(jìn)而可得直線的方程;(2)直線的斜率不為0時(shí),設(shè),直線的方程為,與橢圓方程聯(lián)立,利用韋達(dá)定理,結(jié)合平面向量數(shù)量積公式可得在x軸上存在定點(diǎn),使得為定值,再驗(yàn)證直線的斜率為0的情況即可.

          1)由題得,解得,由,得,故橢圓方程為

          設(shè),易知直線的方程為,由,得

          于是,

          從而,故,

          所以直線的方程為.

          2)①當(dāng)直線的斜率不為0時(shí),設(shè),直線的方程為

          ,得,所以

          所以

          ,

          ,得,故此時(shí)點(diǎn),;

          ②當(dāng)直線的斜率為0時(shí),.

          綜上,在x軸上存在定點(diǎn),使得為定值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),分別為橢圓的右下頂點(diǎn),且.

          1)求橢圓的方程;

          2)設(shè)點(diǎn)在橢圓內(nèi),滿足直線,的斜率乘積為,且直線,分別交橢圓于點(diǎn),.

          ①若,關(guān)于軸對(duì)稱,求直線的斜率;

          ②若的面積分別為,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地區(qū)進(jìn)行疾病普查,為此要檢驗(yàn)每一人的血液,如果當(dāng)?shù)赜?/span>人,若逐個(gè)檢驗(yàn)就需要檢驗(yàn)次,為了減少檢驗(yàn)的工作量,我們把受檢驗(yàn)者分組,假設(shè)每組有個(gè)人,把這個(gè)個(gè)人的血液混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這個(gè)人的血液全為陰性,因而這個(gè)人只要檢驗(yàn)一次就夠了,如果為陽(yáng)性,為了明確這個(gè)個(gè)人中究竟是哪幾個(gè)人為陽(yáng)性,就要對(duì)這個(gè)人再逐個(gè)進(jìn)行檢驗(yàn),這時(shí)個(gè)人的檢驗(yàn)次數(shù)為次.假設(shè)在接受檢驗(yàn)的人群中,每個(gè)人的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性是獨(dú)立的,且每個(gè)人是陽(yáng)性結(jié)果的概率為.

          (Ⅰ)為熟悉檢驗(yàn)流程,先對(duì)3個(gè)人進(jìn)行逐個(gè)檢驗(yàn),若,求3人中恰好有1人檢測(cè)結(jié)果為陽(yáng)性的概率;

          (Ⅱ)設(shè)個(gè)人一組混合檢驗(yàn)時(shí)每個(gè)人的血需要檢驗(yàn)的次數(shù).

          ①當(dāng),時(shí),求的分布列;

          ②是運(yùn)用統(tǒng)計(jì)概率的相關(guān)知識(shí),求當(dāng)滿足什么關(guān)系時(shí),用分組的辦法能減少檢驗(yàn)次數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司甲、乙兩個(gè)班組分別試生產(chǎn)同一種規(guī)格的產(chǎn)品,已知此種產(chǎn)品的質(zhì)量指標(biāo)檢測(cè)分?jǐn)?shù)不小于70時(shí),該產(chǎn)品為合格品,否則為次品,現(xiàn)隨機(jī)抽取兩個(gè)班組生產(chǎn)的此種產(chǎn)品各100件進(jìn)行檢測(cè),其結(jié)果如下表:

          質(zhì)量指標(biāo)檢測(cè)分?jǐn)?shù)

          [50,60)

          [60,70)

          [70,80)

          [80,90)

          [90,100]

          甲班組生產(chǎn)的產(chǎn)品件數(shù)

          7

          18

          40

          29

          6

          乙班組生產(chǎn)的產(chǎn)品件數(shù)

          8

          12

          40

          32

          8

          (1)根據(jù)表中數(shù)據(jù),估計(jì)甲、乙兩個(gè)班組生產(chǎn)該種產(chǎn)品各自的不合格率;

          (2)根據(jù)以上數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為該種產(chǎn)品的質(zhì)量與生產(chǎn)產(chǎn)品的班組有關(guān)?

          甲班組

          乙班組

          合計(jì)

          合格品

          次品

          合計(jì)

          (3)若按合格與不合格比例,從甲班組生產(chǎn)的產(chǎn)品中抽取4件產(chǎn)品,從乙班組生產(chǎn)的產(chǎn)品中抽取5件產(chǎn)品,記事件A:從上面4件甲班組生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,且都是合格品;事件B:從上面5件乙班組生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,一件是合格品,一件是次品,試估計(jì)這兩個(gè)事件哪一種情況發(fā)生的可能性大.

          附:

          P(K2≥k)

          0.050

          0.010

          0.001

          k

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線的焦點(diǎn)為F,過(guò)F作直線交拋物線CA,B兩點(diǎn),過(guò)A,B分別作拋物線C的切線,兩條切線交于點(diǎn)P.

          1)若P的坐標(biāo)為,求直線的斜率;

          2)若P始終不在橢圓的內(nèi)部(不包括邊界),求外接圓面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪70元,每單抽成2元;乙公司無(wú)底薪,40單以內(nèi)(含40單)的部分每單抽成4元,超出40單的部分每單抽成6元.假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如下頻數(shù)表:

          甲公司送餐員送餐單數(shù)頻數(shù)表

          送餐單數(shù)

          38

          39

          40

          41

          42

          天數(shù)

          20

          40

          20

          10

          10

          乙公司送餐員送餐單數(shù)頻數(shù)表

          送餐單數(shù)

          38

          39

          40

          41

          42

          天數(shù)

          10

          20

          20

          40

          10

          (1)現(xiàn)從甲公司記錄的這100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;

          (2)若將頻率視為概率,回答以下問(wèn)題:

          (i)記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

          (ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國(guó)古代高超的音律藝術(shù)及先進(jìn)的數(shù)學(xué)水平,也印證了我國(guó)古代音律與歷法的密切聯(lián)系.2為骨笛測(cè)量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測(cè)量數(shù)據(jù)(骨笛的彎曲忽略不計(jì)),夏至(或冬至)日光(當(dāng)日正午太陽(yáng)光線)與春秋分日光(當(dāng)日正午太陽(yáng)光線)的夾角等于黃赤交角.

          由歷法理論知,黃赤交角近1萬(wàn)年持續(xù)減小,其正切值及對(duì)應(yīng)的年代如下表:

          黃赤交角

          正切值

          0.439

          0.444

          0.450

          0.455

          0.461

          年代

          公元元年

          公元前2000

          公元前4000

          公元前6000

          公元前8000

          根據(jù)以上信息,通過(guò)計(jì)算黃赤交角,可估計(jì)該骨笛的大致年代是( )

          A.公元前2000年到公元元年B.公元前4000年到公元前2000

          C.公元前6000年到公元前4000D.早于公元前6000

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,是邊長(zhǎng)為4的正方形,平面,分別為的中點(diǎn).

          1)證明:平面.

          2)若,求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下圖是某機(jī)械零件的幾何結(jié)構(gòu),該幾何體是由兩個(gè)相同的直四棱柱組合而成的,且前后,左右、上下均對(duì)稱,每個(gè)四棱柱的底面都是邊長(zhǎng)為2的正方形,高為4,且兩個(gè)四棱柱的側(cè)棱互相垂直.則這個(gè)幾何體的體積為________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案