日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)已知函數(shù)
          (Ⅰ)求函數(shù)的定義域;
          (Ⅱ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅲ)當(dāng)時,若存在使得成立,求的取值范圍.
          (本題滿分14分)
          解:(Ⅰ)當(dāng)時,由;當(dāng)時由
          綜上:當(dāng)時函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823190919663422.gif" style="vertical-align:middle;" />;
          當(dāng)時函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823190919710294.gif" style="vertical-align:middle;" />                     ………3分
          (Ⅱ)
                    ………5分
          時,得,
          ①當(dāng)時,,當(dāng)時,,
          故當(dāng) 時,函數(shù)的遞增區(qū)間為,遞減區(qū)間為
          ②當(dāng)時,,所以,
          故當(dāng)時,上單調(diào)遞增.
          ③當(dāng)時,若,;若,
          故當(dāng)時,的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為
          綜上:當(dāng)時,的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為
          當(dāng)時,的單調(diào)遞增區(qū)間為;
          當(dāng)時,的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;  
          …………10分
          (Ⅲ)因?yàn)楫?dāng)時,函數(shù)的遞增區(qū)間為;單調(diào)遞減區(qū)間為
          若存在使得成立,只須,

          >0
          ≤1

           
                     ≤1…………14分

           
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823192905312287.gif" style="vertical-align:middle;" />(),設(shè)
          (1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);
          (2)求證:;
          (3)求證:對于任意的,總存在,滿足,并確定這樣的的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (理數(shù))(14分) 已知函數(shù),
          (Ⅰ)設(shè)函數(shù)F(x)=18f(x)- [h(x)],求F(x)的單調(diào)區(qū)間與極值;
          (Ⅱ)設(shè),解關(guān)于x的方程;
          (Ⅲ)設(shè),證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=lnx-ax2+(2-a)x
          (1)討論f(x)的單調(diào)性;(2)設(shè)a>0,證明:當(dāng)0<x<時,f>f;
          (3)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,證明f′(x0)<0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分16分)
          已知函數(shù).
          (1)求函數(shù)在點(diǎn)處的切線方程;
          (2)若在區(qū)間上恒成立,求的取值范圍;
          (3)當(dāng)時,求證:在區(qū)間上,滿足恒成立的函數(shù)有無窮多個.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (12分)設(shè)函數(shù)
          (1)求的單調(diào)區(qū)間;
          (2)證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          .(本小題滿分12分)
          已知以函數(shù)f(x)=mx3-x的圖象上一點(diǎn)N(1,n)為切點(diǎn)的切線傾斜角為.
          (1)求m、n的值;
          (2)是否存在最小的正整數(shù)k,使得不等式f(x)≤k-1995,對于x∈[-1,3]恒成立?若存在,求出最小的正整數(shù)k,否則請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          關(guān)于的函數(shù)與數(shù)列具有關(guān)系:
          ,(=1,2,3,…)(為常數(shù)),又設(shè)函數(shù)的導(dǎo)數(shù),為方程的實(shí)根.
          (I)用數(shù)學(xué)歸納法證明:;
          (II)證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          曲線在點(diǎn)P(-1,-1)處的切線方程是              (  )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案