日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設拋物線的頂點為坐標原點,焦點軸的正半軸上,點是拋物線上的一點,以為圓心,2為半徑的圓與軸相切,切點為.

          (I)求拋物線的標準方程:

          (Ⅱ)設直線軸上的截距為6,且與拋物線交于,兩點,連接并延長交拋物線的準線于點,當直線恰與拋物線相切時,求直線的方程.

          【答案】(Ⅰ).

          (Ⅱ) 直線的方程為.

          【解析】試題分析

          (Ⅰ)設拋物線方程為,由以為圓心,2為半徑的圓與軸相切,切點為,可得,故所求方程為.(Ⅱ)由題意設出直線的方程為,并設,由導數(shù)的幾何意義可得拋物線在點處的切線方程為,令,可得.根據(jù)三點共線得,整理得

          ,然后結合根與系數(shù)的關系可解得,于是可得直線的方程.

          試題解析:

          (Ⅰ)設拋物線方程為,

          ∵以為圓心,2為半徑的圓與軸相切,切點為

          ,

          ∴該拋物線的標準方程為.

          (Ⅱ)由題知直線的斜率存在,設其方程為

          消取整理得,

          顯然,

          ,則.

          拋物線在點處的切線方程為

          ,得,可得點

          三點共線得,

          ,即,

          整理得,

          解得,即,

          ∴所求直線的方程為.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,函數(shù)

          1)當時,寫出的單調遞增區(qū)間(不需寫出推證過程);

          2)當時,若直線與函數(shù)的圖象相交于兩點,記,求的最大值;

          3)若關于的方程在區(qū)間上有兩個不同的實數(shù)根,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知中心在原點,焦點在軸上的橢圓的離心率為,過左焦點且垂直于軸的直線交橢圓兩點,且.

          (Ⅰ)的方程;

          (Ⅱ)若圓上一點處的切線交橢圓于兩不同點,求弦長的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】《九章算術》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗公式計算所得弧田面積約是

          A. 平方米 B. 平方米

          C. 平方米 D. 平方米

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(本小題滿分12分)

          某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交元()的管理費,預計當每件產(chǎn)品的售價為元()時,一年的銷售量為萬件.

          )求分公司一年的利潤(萬元)與每件產(chǎn)品的售價的函數(shù)關系式;

          )當每件產(chǎn)品的售價為多少元時,分公司一年的利潤最大,并求出的最大值

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在矩形中,,,為線段的中點,如圖1,沿折起至,使,如圖2所示.

          (1)求證:平面平面;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知,試討論關于方程實根的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為了預防某流感病毒,某學校對教室進行藥熏消毒,室內每立方米空氣中的含藥量(單位:毫克)隨時間(單位:)的變化情況如下圖所示,在藥物釋放的過程中,成正比:藥物釋放完畢后,的函數(shù)關系式為為常數(shù)),根據(jù)圖中提供的信息,回答下列問題:

          1)寫出從藥物釋放開始,之間的函數(shù)關系式.

          2)據(jù)測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室學習,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學生才能回到教空?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知平面直角坐標系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為與曲線C相交于不同的兩點M,N.

          (1)求曲線C的直角坐標方程和直線l的普通方程;

          (2)若,求實數(shù)a的值.

          查看答案和解析>>

          同步練習冊答案