已知函數f(x)=axln x圖象上點(e,f(e))處的切線與直線y=2x平行,g(x)=x2-tx-2.
(1)求函數f(x)的解析式;
(2)求函數f(x)在[n,n+2](n>0)上的最小值;
(3)對一切x∈(0,e],3f(x)≥g(x)恒成立,求實數t的取值范圍.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x2+xsin x+cos x.
(1)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值;
(2)若曲線y=f(x)與直線y=b有兩個不同交點,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數在
處存在極值.
(1)求實數的值;
(2)函數的圖像上存在兩點A,B使得
是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在
軸上,求實數
的取值范圍;
(3)當時,討論關于
的方程
的實根個數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=xln x,g(x)=x3+ax2-x+2.
(1)求函數f(x)的單調區(qū)間;
(2)對一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ex-kx2,x∈R.
(1)若k=,求證:當x∈(0,+∞)時,f(x)>1;
(2)若f(x)在區(qū)間(0,+∞)上單調遞增,試求k的取值范圍;
(3)求證:<e4(n∈N*)..
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(1)已知函數f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實數t的取值范圍;
(2)證明:<ln
<
,其中0<a<b;
(3)設[x]表示不超過x的最大整數,證明:[ln(1+n)]≤[1++ +
]≤1+[lnn](n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數.
(1)當時,求函數
的單調區(qū)間;
(2)若函數在區(qū)間
上為減函數,求實數
的取值范圍;
(3)當時,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com