日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知函數(shù)f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實數(shù)t的取值范圍;
          (2)證明:<ln,其中0<a<b;
          (3)設[x]表示不超過x的最大整數(shù),證明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).

          (1).(2)(3)見解析

          解析試題分析:(1)根據(jù)題意,其實是求實數(shù)t的取值范圍使函數(shù)的最小值小于零,結合函數(shù)的解析式的特點,應利導數(shù)工具,研究函數(shù)的單調(diào)性和極(最)值問題.(2)要證,即證:,只要證:,因為,所以, ,因此可構造函數(shù),利用導數(shù)探究其在符號即可.類似的方法可證明,必要時可借用(1)的結論.
          (3)根據(jù)的定義,
          要證 
          只需證:
          由(2),若令,則有
          分別取時有:  
          上述同向不等式兩邊相加可得:,類似地可證另一部分.
          試題解析:(1)若t<0,令x=,則f()=e-1-1<0;
          若t=0,f(x)=ex-1>0,不合題意;
          若t>0,只需f(x)min≤0.
          求導數(shù),得f′(x)=ex-1-t.
          令f′(x)=0,解得x=lnt+1.
          當x<lnt+1時,f′(x)<0,∴f(x)在(-∞,lnt+1)上是減函數(shù);
          當x>lnt+1時,f′(x)>0,∴f(x)在(lnt+1,+∞)上是增函數(shù).
          故f(x)在x=lnt+1處取得最小值f(lnt+1)=t-t(lnt+1)=-tlnt.
          ∴-tlnt≤0,由t>0,得lnt≥0,∴t≥1.
          綜上可知,實數(shù)t的取值范圍為(-∞,0)∪[1,+∞).          4分
          (2)由(1),知f(x)≥f(lnt+1),即ex-1-tx≥-tlnt.
          取t=1,ex-1-x≥0,即x≤ex-1
          當x>0時,lnx≤x-1,當且僅當x=1時,等號成立,
          故當x>0且x≠1時,有l(wèi)nx<x-1.
          令x=,得ln-1(0<a<b),即ln
          令x=,得ln-1(0<a<b),即-ln,亦即ln
          綜上,得<ln.                     9分
          (3)由(2),得<ln
          令a=k,b=k+1(k∈N*),得<ln
          對于ln,分別取k=1,2, ,n,
          將上述n個不等式依次相加,得
          ln+ln+ +ln<1++ +
          ∴l(xiāng)n(1+n)<1++ +.     ①
          對于<ln,分別取k=1,2, ,n-1,
          將上述n-1個不等式依次相加,得
          + +<ln+ln+ +ln,即

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)=ln ax (a≠0).
          (1)求函數(shù)f(x)的單調(diào)區(qū)間及最值;
          (2)求證:對于任意正整數(shù)n,均有1+(e為自然對數(shù)的底數(shù));
          (3)當a=1時,是否存在過點(1,-1)的直線與函數(shù)yf(x)的圖象相切?若存在,有多少條?若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)=ax2-(2a+1)x+2ln x,a∈R.
          (1)若曲線yf(x)在x=1和x=3處的切線互相平行,求a的值;
          (2)求f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)=axln x圖象上點(e,f(e))處的切線與直線y=2x平行,g(x)=x2tx-2.
          (1)求函數(shù)f(x)的解析式;
          (2)求函數(shù)f(x)在[n,n+2](n>0)上的最小值;
          (3)對一切x∈(0,e],3f(x)≥g(x)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          ⑴當時,①若的圖象與的圖象相切于點,求的值;
          上有解,求的范圍;
          ⑵當時,若上恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù).
          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅱ)記函數(shù)的最小值為,求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知圖像過點,且在處的切線方程是.
          (1)求的解析式;
          (2)求在區(qū)間上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)為自然對數(shù)的底數(shù)).
          (Ⅰ)求曲線在點處的切線方程;
          (Ⅱ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅲ)若存在使不等式成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知數(shù)列的前n項和為Sn,對一切正整數(shù)n,點在函數(shù)的圖像上,且過點的切線的斜率為kn
          (1)求數(shù)列的通項公式;
          (2)若,求數(shù)列的前n項和Tn

          查看答案和解析>>