某公司經(jīng)銷一種數(shù)碼產(chǎn)品,第一年可獲利200萬元,從第二年起,由于市場競爭等方面的原因,其利潤每年比上一年減少20萬元,按照這一規(guī)律,如果公司不開發(fā)新產(chǎn)品,也不調(diào)整經(jīng)營策略,從哪一年起,該公司經(jīng)銷這一產(chǎn)品將虧損?
從第12年起,該公司經(jīng)銷該產(chǎn)品將虧損。
解析試題分析:根據(jù)題意可知每年的獲利可以看作是一個等差數(shù)列,公差為-20,首項(xiàng)為200,的等差數(shù)列,且可知公司經(jīng)銷這一產(chǎn)品將虧損,即可之第n年的獲利小于等于零可知解得 ,那么開始虧損在從第12年起利潤為負(fù)數(shù),可知從第12年起,該公司經(jīng)銷該產(chǎn)品將虧損。
考點(diǎn):函數(shù)的運(yùn)用
點(diǎn)評:解決的關(guān)鍵是結(jié)合等差數(shù)列的求和公式來得到不等式進(jìn)而得到,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是等差數(shù)列,其前
項(xiàng)和為
;
是等比數(shù)列,且
.
(1)求數(shù)列與
的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某市去年11份曾發(fā)生流感,據(jù)統(tǒng)計(jì),11月1日該市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染者減少30人,到11月30日止,該市在這30日內(nèi)感染該病毒的患者總共8670人,問11月幾日,該市感染此病毒的新患者人數(shù)最多?并求這一天的新患者人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項(xiàng)均為正數(shù)的數(shù)列前
項(xiàng)和為
,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知公比為的等比數(shù)列
滿足
,且存在
滿足
,
,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是一個等差數(shù)列,
是其前
項(xiàng)和,且
,
.
(1)求的通項(xiàng)
;
(2)求數(shù)列的前10項(xiàng)的和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足
,
(I) 求數(shù)列的通項(xiàng)公式;
(II) 求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知數(shù)列的首項(xiàng)為
,其前
項(xiàng)和為
,且對任意正整數(shù)
有:
、
、
成等差數(shù)列.
(1)求證:數(shù)列成等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知 是等差數(shù)列,
是公比為
的等比數(shù)列,
,記
為數(shù)列
的前
項(xiàng)和,
(1)若是大于
的正整數(shù)
,求證:
;
(2)若是某一正整數(shù)
,求證:
是整數(shù),且數(shù)列
中每一項(xiàng)都是數(shù)列
中的項(xiàng);
(3)是否存在這樣的正數(shù),使等比數(shù)列
中有三項(xiàng)成等差數(shù)列?若存在,寫出一個
的值,并加以說明;若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在等差數(shù)列中,
,前
項(xiàng)和為
,等比數(shù)列
各項(xiàng)均為正數(shù),
,且
,
的公比
.
(1)求與
;(2)求
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com