日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】已知函數是自然對數的底數,.

          1)求函數的圖象在處的切線方程;

          2)若函數在區(qū)間上單調遞增,求實數的取值范圍;

          3)若函數在區(qū)間上有兩個極值點,且恒成立,求滿足條件的的最小值(極值點是指函數取極值時對應的自變量的值).

          【答案】1;(2;(3.

          【解析】

          1)利用導數的幾何意義計算即可;

          2上恒成立,只需,注意到;

          3上有兩根,令,求導可得上單調遞減,在上單調遞增,所以,,,求出的范圍即可.

          1)因為,所以,

          時,,

          所以切線方程為,即.

          2.

          因為函數在區(qū)間上單調遞增,所以,且恒成立,

          ,

          所以,即,又,

          ,所以實數的取值范圍是.

          3.

          因為函數在區(qū)間上有兩個極值點,

          所以方程上有兩不等實根,即.

          ,則,由,得,

          所以上單調遞減,在上單調遞增,

          所以,解得.

          又由,所以,

          且當時,單調遞增,

          時,單調遞減,是極值點,

          此時

          ,則,

          所以上單調遞減,所以.

          因為恒成立,所以.

          ,取,則

          所以.

          ,則.

          時,;當時,.

          所以,

          所以上單調遞增,所以,

          即存在使得,不合題意.

          滿足條件的的最小值為-4.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】設橢圓的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.

          1)求橢圓的標準方程.

          2)直線與橢圓交于兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數處的切線方程為.

          (1)求實數的值;

          (2)若有兩個極值點,求的取值范圍并證明.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知若橢圓)交軸于,兩點,點是橢圓上異于,的任意一點,直線,分別交軸于點,,則為定值.

          1)若將雙曲線與橢圓類比,試寫出類比得到的命題;

          2)判定(1)類比得到命題的真假,請說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】管道清潔棒是通過在管道內釋放清潔劑來清潔管道內壁的工具,現(xiàn)欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內恰好處于位置(圖中給出的數據是圓管內壁直徑大小,.

          1)請用角表示清潔棒的長;

          2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設置如下:先直行綠燈30秒,再左轉綠燈30秒,然后是紅燈1分鐘,右轉不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.

          1)請問小明上學的路線有多少種不同可能?

          2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經過處,且全程不等紅綠燈的概率;

          3)請你根據每條可能的路線中等紅綠燈的次數的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在平面直角坐標系中,曲線的參數方程是是參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,其傾斜角為

          )證明直線恒過定點,并寫出直線的參數方程;

          )在()的條件下,若直線與曲線交于兩點,求的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數

          1)若函數在區(qū)間上恒成立,求實數a的取值范圍;

          2)若函數在區(qū)間上有兩個極值點,求實數a的取值范圍;

          3)若函數的導函數的圖象與函數圖象有兩個不同的交點,求實數a的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知定義在上的函數,其中e為自然對數的底數.

          1)求證:有且只有一個極小值點;

          2)若不等式上恒成立,求實數a的取值范圍.

          查看答案和解析>>

          同步練習冊答案