【題目】某小店每天以每份5元的價(jià)格從食品廠購進(jìn)若干份食品,然后以每份10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的食品還可以每份1元的價(jià)格退回食品廠處理.
(Ⅰ)若小店一天購進(jìn)16份,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量
(單位:份,
)的函數(shù)解析式;
(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)小店一天購進(jìn)16份這種食品,表示當(dāng)天的利潤(單位:元),求
的分布列及數(shù)學(xué)期望;
(ii)以小店當(dāng)天利潤的期望值為決策依據(jù),你認(rèn)為一天應(yīng)購進(jìn)食品16份還是17份?
【答案】(Ⅰ);(Ⅱ)(i)答案見解析;(ii)17份.
【解析】試題分析:
(Ⅰ) 分和
兩種情況分別求得利潤,寫成分段的形式即可得到所求.(Ⅱ)(i) 由題意知
的所有可能的取值為62,71,80,分別求出相應(yīng)的概率可得分布列和期望; (ii)由題意得小店一天購進(jìn)17份食品時(shí),利潤
的所有可能取值為58,67,76,85,分別求得概率后可得
的分布列和期望,比較
的大小可得選擇的結(jié)論.
試題解析:
(Ⅰ)當(dāng)日需求量時(shí),利潤
,
當(dāng)日需求量時(shí),利潤
,
所以關(guān)于
的函數(shù)解析式為
.
(Ⅱ)(i)由題意知的所有可能的取值為62,71,80,
并且,
,
.
∴的分布列為:
X | 62 | 71 | 80 |
P | 0.1 | 0.2 | 0.7 |
∴元.
(ii)若店一天購進(jìn)17份食品,表示當(dāng)天的利潤(單位:元),那么
的分布列為
Y | 58 | 67 | 76 | 85 |
P | 0.1 | 0.2 | 0.16 | 0.54 |
∴的數(shù)學(xué)期望為
元.
由以上的計(jì)算結(jié)果可以看出,
即購進(jìn)17份食品時(shí)的平均利潤大于購進(jìn)16份時(shí)的平均利潤.
∴所以小店應(yīng)選擇一天購進(jìn)17份.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓
的離心率為
,且過點(diǎn)
.
(1)求的方程;
(2)若動(dòng)點(diǎn)在直線
上,過
作直線交橢圓
于
兩點(diǎn),使得
,再過
作直線
,證明:直線
恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若函數(shù)的圖象在點(diǎn)
處的切線平行于直線
,求
的值;
(2)討論函數(shù)在定義域上的單調(diào)性;
(3)若函數(shù)在
上的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓
的左右頂點(diǎn),點(diǎn)
是橢圓的上頂點(diǎn),若該橢圓的焦距為
,直線
,
的斜率之積為
.
(1)求橢圓的方程;
(2)是否存在過點(diǎn)的直線
與橢圓
交于兩點(diǎn)
,使得以
為直徑的圓經(jīng)過點(diǎn)
?若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,
,
.
()求函數(shù)
的單增區(qū)間.
()若
,求
值.
()在
中,角
,
,
的對(duì)邊分別是
,
,
.且滿足
,求函數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若對(duì)于任意,都有
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,F(xiàn)(-1, 0)是橢圓的左焦點(diǎn),過點(diǎn)F且方向向量為
的光線,經(jīng)直線
反射后通過左頂點(diǎn)D
.
(I)求橢圓的方程;
(II)過點(diǎn)F作斜率為的直線
交橢圓
于A, B兩點(diǎn),M為AB的中點(diǎn),直線OM (0為原點(diǎn))與直線
交于點(diǎn)P,若滿足
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以,
,
,
分別表示三角形的面積,大斜,中斜,小斜;
,
,
分別為對(duì)應(yīng)的大斜,中斜,小斜上的高;則
.若在
中
,
,
,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________.
【答案】
【解析】根據(jù)題意可知: ,故設(shè)
,由
代入
可得
,由余弦定理可得cosA=
,所以由正弦定理得三角形外接圓半徑為
【題型】填空題
【結(jié)束】
17
【題目】在等差數(shù)列中,已知公差
,
,且
,
,
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式
;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年12月,針對(duì)國內(nèi)天然氣供應(yīng)緊張的問題,某市政府及時(shí)安排部署,加氣站采取了緊急限氣措施,全市居民打響了節(jié)約能源的攻堅(jiān)戰(zhàn).某研究人員為了了解天然氣的需求狀況,對(duì)該地區(qū)某些年份天然氣需求量進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需求量 (單位:千萬立方米)與年份
(單位:年)之間的關(guān)系.并且已知
關(guān)于
的線性回歸方程是
,試確定
的值,并預(yù)測(cè)2018年該地區(qū)的天然氣需求量;
(Ⅱ)政府部門為節(jié)約能源出臺(tái)了《購置新能源汽車補(bǔ)貼方案》,該方案對(duì)新能源汽車的續(xù)航里程做出了嚴(yán)格規(guī)定,根據(jù)續(xù)航里程的不同,將補(bǔ)貼金額劃分為三類,A類:每車補(bǔ)貼1萬元,B類:每車補(bǔ)貼2.5萬元,C類:每車補(bǔ)貼3.4萬元.某出租車公司對(duì)該公司60輛新能源汽車的補(bǔ)貼情況進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:
為了制定更合理的補(bǔ)貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補(bǔ)貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進(jìn)一步跟蹤調(diào)查,求恰好有1輛車享受3.4萬元補(bǔ)貼的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com