日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ex-x+m,g(x)=x3-3ax2+2bx,且函數(shù)g(x)=x3-3ax2+2bx在x=1處的切線方程為y=-1,
          (1)求a,b的值;
          (2)若對(duì)于任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)<g(x2)成立,求m的取值范圍.
          考點(diǎn):導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用
          專(zhuān)題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
          分析:(1)求導(dǎo)數(shù),利用函數(shù)g(x)=x3-3ax2+2bx在x=1處的切線方程為y=-1,可得
          3-6a+2b=0
          1-3a+2b=-1
          ,即可求a,b的值;
          (2)對(duì)于任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)<g(x2)成立,即是f(x)max<g(x)max,從而可求m的取值范圍.
          解答: 解:(1)由函數(shù)g(x)=x3-3ax2+2bx在x=1處的切線方程為y=-1,
          知g'(1)=0,g(1)=-1.
          又g'(x)=3x2-6ax+2b.
          所以
          3-6a+2b=0
          1-3a+2b=-1
          ,解得
          a=
          1
          3
          b=-
          1
          2
          ,
          所以g(x)=x3-x2-x
          (2)對(duì)于任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)<g(x2)成立,
          即是f(x)max<g(x)max
          又f'(x)=ex-1在x∈[0,2]恒有f'(x)>0,
          即f(x)在x∈[0,2]遞增
          所以f(x)max=f(2)=e2-2+m
          g'(x)=3x2-2x+1=(3x+1)(x-1),
          令g'(x)=0,得x=-
          1
          3
          (舍)或x=1,
          故g(x)在(0,1)遞減,在(1,2)遞增,
          又g(0)=0,g(2)=2,所以g(x)max=g(2)=2
          于是 e2-2+m<2
          所以m<4-e2
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查函數(shù)的單調(diào)性與最值,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知集合A={x|y=ln(3-x)},B={x|x2-5x+4≤0},則A∩B=(  )
          A、{x|1≤x<3}
          B、{x|1<x<3}
          C、{x|0<x<4}
          D、{x|0≤x≤4}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知拋物線C:x2=4y焦點(diǎn)F的直線與C交于A,B兩點(diǎn).
          (Ⅰ)求線段AB中點(diǎn)Q的軌跡方程;
          (Ⅱ)動(dòng)點(diǎn)P是拋物線C上異于A,B的任意一點(diǎn),直線PA,PB與拋物線C的準(zhǔn)線l分別交于點(diǎn)M,N,求
          FM
          FN
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若關(guān)于x的不等式|x-2|+|x-3|<t,(t∈T)的解集非空
          (Ⅰ)求集合T;
          (Ⅱ)若a,b∈T,求證:ab+1>a+b.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)fn(x)=2sin(anx+
          π
          6
          )(an>0,n∈N*),其周期為n(n+1),Sn是數(shù)列{an}的前n項(xiàng)和.
          (Ⅰ)求an,Sn的表達(dá)式;
          (Ⅱ)設(shè)bn=fn(1),求{bn}的最大、最小項(xiàng)的值;
          (Ⅲ)在(2)的條件下,證明:bn<Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,一條直角走廊寬為a米.現(xiàn)有一轉(zhuǎn)動(dòng)靈活的平板車(chē),其平板面為矩形,它的寬為b(0<b<a)米.
          (1)若平板車(chē)卡在直角走廊內(nèi),且∠CAB=θ,試求平板面的長(zhǎng)l.
          (2)若平板車(chē)要想順利通過(guò)直角走廊,其長(zhǎng)度不能超過(guò)多少米?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2x2-alnx.
          (Ⅰ)若a=4,求函數(shù)f(x)的極小值;
          (Ⅱ)設(shè)函數(shù)g(x)=-
          3
          2
          x2+(1-a)x
          ,試問(wèn):在定義域內(nèi)是否存在三個(gè)不同的自變量xi(x=1,2,3)使得f(xi)+g(xi)的值相等,若存在,請(qǐng)求出a的范圍,若不存在,請(qǐng)說(shuō)明理由?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,以Rt△ABC直角邊AC上一點(diǎn)O為圓心,OC為半徑的⊙O與AC另一個(gè)交點(diǎn)E,D為斜邊AB上一點(diǎn)且在⊙O上,AD2=AE•AC.
          (Ⅰ)證明AB是⊙O的切線;
          (Ⅱ)若DE•OB=8,求⊙O的半徑.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知虛數(shù)α、β滿足α2+pα+1=0和β2+pβ+1=0(其中p∈R),若|α-β|=1,則p=
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案