日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          (1)求曲線與直線垂直的切線方程;

          (2)求的單調(diào)遞減區(qū)間

          (3)若存在,使函數(shù)成立求實數(shù)的取值范圍

          【答案】(1);(2)減區(qū)間為;(3.

          【解析】

          試題分析:(1)求出導數(shù),求出切點坐標,可得切線方程;(2)令解出的單調(diào)遞減區(qū)間;(3)由已知得,分離常數(shù),存在使函數(shù)成立,使即可,對進行求導,利用導數(shù)判斷函數(shù)的單調(diào)性得到其最小值.

          試題解析:(1)由已知,·······2分

          設(shè)切點坐標為,令,解得,所以,因此切線方程為,即;·······4分

          (2)函數(shù)的定義域為,

          ,由,解得,

          所以函數(shù)的單調(diào)遞減區(qū)間為·······8分

          (3)因為,

          由已知,若存在使函數(shù)成立,

          則只需滿足當時,即可.·······9分

          ·······10分

          ,則上恒成立,

          所以上單調(diào)遞增,

          ,

          ,又,·······13分

          ,則上單調(diào)遞減,在上單調(diào)遞增,

          所以上的最小值是,·······15分

          ,而,所以一定滿足條件,

          綜上所述,的取值范圍是·······16分

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26.{an}的前n項和為Sn
          (1)求an及Sn
          (2)令bn=﹣ (n∈N*),求數(shù)列{bn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知M(﹣2,﹣3),N(3,0),直線l過點(﹣1,2)且與線段MN相交,則直線l的斜率k的取值范圍是( 。
          A.或k≥5
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列的首項 ,

          1)證明:數(shù)列是等比數(shù)列;

          2)數(shù)列的前項和

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

          (Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

          (Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);

          (Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

          (Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

          (Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);

          (Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】△ABC的內(nèi)角A,B,C對邊分別是a,b,c.且SABC=30,cosA=
          (1)求 的值;
          (2)若c﹣b=1,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知動直線l:(m+3)x-(m+2)ym=0與圓C:(x-3)2+(y-4)2=9.

          (1)求證:無論m為何值,直線l與圓C總相交.

          (2)求直線l被圓C所截得的弦長的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知動圓過定點且與圓相切,記動圓圓心的軌跡為曲線.

          (1)求曲線的方程;

          (2)過點且斜率不為零的直線交曲線, 兩點,在軸上是否存在定點,使得直線的斜率之積為非零常數(shù)?若存在,求出定點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案