日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ) 的最小正周期為π,且f(﹣x)=f(x),則(
          A.f(x)在 單調(diào)遞減
          B.f(x)在( , )單調(diào)遞減
          C.f(x)在(0, )單調(diào)遞增
          D.f(x)在( )單調(diào)遞增

          【答案】A
          【解析】解:由于f(x)=sin(ωx+)+cos(ωx+)= , 由于該函數(shù)的最小正周期為T(mén)= ,得出ω=2,
          又根據(jù)f(﹣x)=f(x),得φ+ = +kπ(k∈Z),以及|φ|< ,得出φ=
          因此,f(x)= cos2x,
          若x∈ ,則2x∈(0,π),從而f(x)在 單調(diào)遞減,
          若x∈( , ),則2x∈( , ),
          該區(qū)間不為余弦函數(shù)的單調(diào)區(qū)間,故B,C,D都錯(cuò),A正確.
          故選A.
          利用輔助角公式將函數(shù)表達(dá)式進(jìn)行化簡(jiǎn),根據(jù)周期與ω的關(guān)系確定出ω的值,根據(jù)函數(shù)的偶函數(shù)性質(zhì)確定出φ的值,再對(duì)各個(gè)選項(xiàng)進(jìn)行考查篩選.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題滿(mǎn)分12分)

          某企業(yè)有甲、乙兩個(gè)研發(fā)小組.為了比較他們的研發(fā)水平,現(xiàn)隨機(jī)抽取這兩個(gè)小組往年研發(fā)新產(chǎn)品的結(jié)果如下:(a,b),(a,),(a,b),(,b),(),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b),(a,b).其中a,分別表示甲組研發(fā)成功和失;b,分別表示乙組研發(fā)成功和失。

          (I)若某組成功研發(fā)一種新產(chǎn)品,則給該組記1分,否則記0分.試計(jì)算甲、乙兩組研發(fā)新產(chǎn)品的成績(jī)的平均數(shù)和方差,并比較甲、乙兩組的研發(fā)水平;

          (II)若該企業(yè)安排甲、乙兩組各自研發(fā)一種新產(chǎn)品,試估計(jì)恰有一組研發(fā)成功的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=x3﹣3ax﹣a在(0,1)內(nèi)有最小值,則a的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= x3﹣2ax2+3a2x+b(a>0).
          (1)當(dāng)y=f(x)的極小值為1時(shí),求b的值;
          (2)若f(x)在區(qū)間[1,2]上是減函數(shù),求a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=lg(2+x),g(x)=lg(2﹣x),設(shè)h(x)=f(x)+g(x)
          (1)求函數(shù)h(x)的定義域.
          (2)判斷函數(shù)h(x)的奇偶性,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=Asin(ωx﹣ )+1(A>0,ω>0)的最大值為3,其圖象的相鄰兩條對(duì)稱(chēng)軸之間的距離為
          (1)求函數(shù)f(x)對(duì)稱(chēng)中心的坐標(biāo);
          (2)求函數(shù)f(x)在區(qū)間[0, ]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(Ⅰ)設(shè)z=1+i(i是虛數(shù)單位),求 +z2的值; (Ⅱ)設(shè)x,y∈R,復(fù)數(shù)z=x+yi,且滿(mǎn)足|z|2+(z+ )i= ,試求x,y的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】給出下列命題:
          ①函數(shù)f(x)=loga(2x﹣1)﹣1的圖象過(guò)定點(diǎn)(1,0);
          ②已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x(x+1),則f(x)的解析式為f(x)=x2﹣|x|;
          ③若 ,則a的取值范圍是 ;
          其中所有正確命題的序號(hào)是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】放射性元素由于不斷有原子放射出微粒子而變成其他元素,其含量不斷減少,這種現(xiàn)象稱(chēng)為衰變.假設(shè)在放射性同位素銫137的衰變過(guò)程中,其含量M(單位:太貝克)與時(shí)間t(單位:年)滿(mǎn)足函數(shù)關(guān)系:M(t)=M0 ,其中M0為t=0時(shí)銫137的含量.已知t=30時(shí),銫137含量的變化率是﹣10In2(太貝克/年),則M(60)=(
          A.5太貝克
          B.75In2太貝克
          C.150In2太貝克
          D.150太貝克

          查看答案和解析>>

          同步練習(xí)冊(cè)答案