日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】中, , , , 的中點(diǎn), 是線段上一個動點(diǎn),且,如圖所示,沿翻折至,使得平面平面.

          (1)當(dāng)時,證明: 平面;

          (2)是否存在,使得三棱錐的體積是?若存在,求出的值;若不存在,請說明理由.

          【答案】(1)證明見解析;(2) 存在,使得三棱錐的體積是.

          【解析】試題分析:

          (1)由題意可得當(dāng)時, 的中點(diǎn),而的中點(diǎn),由幾何關(guān)系有.利用面面垂直的性質(zhì)定理,結(jié)合平面平面,平面平面,可得平面.

          (2)連接,結(jié)合(1) 結(jié)論可得平面,即是三棱錐的高,且.而,計算可得.

          假設(shè)存在滿足題意的,則三棱錐的體積為.解得,則,即存在滿足題意.

          試題解析:

          (1)在中, ,

          ,則,

          的中點(diǎn),連接

          當(dāng)時, 的中點(diǎn),而的中點(diǎn),

          的中位線,∴.

          中, 的中點(diǎn),

          的中點(diǎn).

          中, ,

          ,則.

          又平面平面,平面平面,

          平面.

          (2)連接,由(1)知,

          ,

          而平面平面,平面平面.

          平面

          是三棱錐的高,且.

          于點(diǎn).

          ,

          可得.

          假設(shè)存在滿足題意的,則三棱錐的體積為

          .

          解得

          ,

          故存在,使得三棱錐的體積是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為: .

          1)求, 的值;

          2)設(shè),求函數(shù)上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方體ABCDA1B1C1D1中,E,F分別是AD,DD1的中點(diǎn).

          求證:(1)EF∥平面C1BD;

          (2)A1C⊥平面C1BD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,該幾何體是由一個直三棱柱和一個正四棱錐組合而成, ,

          (Ⅰ)證明:平面平面

          (Ⅱ)求正四棱錐的高,使得二面角的余弦值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          當(dāng)時, 恒成立,求范圍;

          方程有唯一實數(shù)解,求正數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的右焦點(diǎn)為,過且與軸垂直的弦長為3.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)過作直線與橢圓交于兩點(diǎn),問:在軸上是否存在點(diǎn),使為定值,若存在,請求出點(diǎn)坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2016·懷仁期中)已知命題x∈[-1,2],函數(shù)f(x)=x2x的值大于0.若是真命題,則命題可以是(  )

          A. x∈(-1,1),使得cos x<

          B. “-3<m<0”是“函數(shù)f(x)=x+log2xm在區(qū)間上有零點(diǎn)”的必要不充分條件

          C. 直線x是曲線f(x)=的一條對稱軸

          D. x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點(diǎn)處的切線的斜率不小于-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=emx+x2-mx.

          (1)證明:f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;

          (2)若對于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)有兩個零點(diǎn).

          (1)求實數(shù)的取值范圍;

          (2)設(shè), )是的兩個零點(diǎn),證明:

          查看答案和解析>>

          同步練習(xí)冊答案