已知在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo)是
,曲線C的極坐標(biāo)方程為
.
(I)求點的直角坐標(biāo)和曲線C的直角坐標(biāo)方程;
(II)若經(jīng)過點的直線
與曲線C交于A、B兩點,求
的最小值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的極坐標(biāo)方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出直線的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換
得到曲線
,設(shè)
為曲線
上任一點,求
的最小值,并求相應(yīng)點
的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直角坐標(biāo)系和極坐標(biāo)系
的原點與極點重合,
軸正半軸與極軸重合,單位長度相同,在直角坐標(biāo)系下,曲線C的參數(shù)方程為
為參數(shù))。
(1)在極坐標(biāo)系下,曲線C與射線和射線
分別交于A,B兩點,求
的面積;
(2)在直角坐標(biāo)系下,直線的參數(shù)方程為
(
為參數(shù)),求曲線C與直線
的交點坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)把下列的極坐標(biāo)方程化為直角坐標(biāo)方程(并說明對應(yīng)的曲線):
① ②
(2)把下列的參數(shù)方程化為普通方程(并說明對應(yīng)的曲線):
③ ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共10分)
在直角坐標(biāo)系中直線L過原點O,傾斜角為,在極坐標(biāo)系中(與直角坐標(biāo)系有相同的長度單位,極點為原點,極軸與x的非負(fù)半軸重合)曲線C:
,
(1)求曲線C的直角坐標(biāo)方程;
(2)直線L與曲線C交于點,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:
(I)求曲線C1的普通方程;
(II)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為,圓
的參數(shù)方程為
(其中
為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓上的點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的單位長度,已知直線經(jīng)過點P(1,1),傾斜角
(1)寫出直線的參數(shù)方程;(2)設(shè)
與圓
相交與A,B,求點P到A,B兩點的距離積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,是圓的內(nèi)接三角形,
的平分線交圓于點
,交
于點
,過點
的圓的切線與
的延長線交于點
.在上述條件下,給出下列四個結(jié)論:
①平分
;②
;③
;④
.
則所有正確結(jié)論的序號是
A.①② | B.③④ | C.①②③ | D.①②④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com