日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          (1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

          (2)當(dāng)時,求證:.

          【答案】(1)f(x)的單調(diào)遞增區(qū)間為(-∞,0),單調(diào)遞減區(qū)間為(0,+∞);(2)見解析.

          【解析】分析:(1)當(dāng)a=時,求出f′(x),解不等式f′(x)>0,f′(x)<0即得函數(shù)f(x)的單調(diào)區(qū)間;

          (2)構(gòu)造函數(shù)F(x)=x﹣f(x)=ex﹣(a﹣1)x,利用導(dǎo)數(shù)證明F(x)0即可.

          詳解:(1)當(dāng)a=1時,f(x)=x-ex.

          令f′(x)=1-ex=0,得x=0.

          當(dāng)x<0時,f′(x)>0;當(dāng)x>0時,f′(x)<0.

          ∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0),單調(diào)遞減區(qū)間為(0,+∞).

          (2)證明:令F(x)=x-f(x)=ex-(a-1)x.

          ①當(dāng)a=1時,F(xiàn)(x)=ex>0,∴f(x)≤x成立;

          ②當(dāng)1<a≤1+e時,F(xiàn)′(x)=ex-(a-1)=ex-eln(a1)

          當(dāng)x<ln(a-1)時,F(xiàn)′(x)<0;當(dāng)x>ln(a-1)時,F(xiàn)′(x)>0,

          ∴F(x)在(-∞,ln(a-1))上單調(diào)遞減,在(ln(a-1),+∞)上單調(diào)遞增,

          ∴F(x)≥F(ln(a-1))=eln(a1)-(a-1)ln(a-1)=(a-1)[1-ln(a-1)],

          ∵1<a≤1+e,∴a-1>0,1-ln(a-1)≥1-ln[(1+e)-1]=0,

          ∴F(x)≥0,即f(x)≤x成立.

          綜上,當(dāng)1≤a≤1+e時,有f(x)≤x.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),,函數(shù)

          的最大值為0,記,求的值;

          當(dāng)時,記不等式的解集為M,求函數(shù)的值域是自然對數(shù)的底數(shù);

          當(dāng)時,討論函數(shù)的零點(diǎn)個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,則的值為______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義在[1,+∞)上的函數(shù)f(x)= 給出下列結(jié)論: ①函數(shù)f(x)的值域?yàn)椋?,8];
          ②對任意的n∈N,都有f(2n)=23n;
          ③存在k∈( , ),使得直線y=kx與函數(shù)y=f(x)的圖象有5個公共點(diǎn);
          ④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在n∈N,使得(a,b)(2n , 2n+1)”
          其中正確命題的序號是(
          A.①②③
          B.①③④
          C.①②④
          D.②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為

          (1)若函數(shù)時有極值,求表達(dá)式;

          (2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加現(xiàn)對一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購入使用之日起,前五年平均每臺設(shè)備每年的維護(hù)費(fèi)用大致如表:

          年份

          1

          2

          3

          4

          5

          維護(hù)費(fèi)萬元

          y關(guān)于t的線性回歸方程;

          若該設(shè)備的價(jià)格是每臺5萬元,甲認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,而乙則認(rèn)為應(yīng)該使用滿十年換一次設(shè)備,你認(rèn)為甲和乙誰更有道理?并說明理由.

          參考公式:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正方體ABCD﹣A1B1C1D1 , E,F(xiàn)分別是上底面A1B1C1D1和側(cè)面CDD1C1的中心,若 =x +y +z ,則x+y+z=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)y=lg(﹣x2+4x﹣3)的定義域?yàn)锳,函數(shù)y= ,x∈(0,m)的值域?yàn)锽.
          (1)當(dāng)m=2時,求A∩B;
          (2)若“x∈A”是“x∈B”的必要不充分條件,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列四個命題: ①若a<b,則a2<b2;
          ②若a≥b>﹣1,則
          ③若正整數(shù)m和n滿足m<n,則 ;
          ④若x>0,且x≠1,則lnx+ ≥2.
          其中所有真命題的序號是

          查看答案和解析>>

          同步練習(xí)冊答案